mirror of
https://github.com/YuzuZensai/spleeter.git
synced 2026-01-06 04:32:43 +00:00
6
.github/workflows/conda.yml
vendored
6
.github/workflows/conda.yml
vendored
@@ -1,8 +1,6 @@
|
||||
name: conda
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- workflow_dispatch
|
||||
env:
|
||||
ANACONDA_USERNAME: ${{ secrets.ANACONDA_USERNAME }}
|
||||
ANACONDA_PASSWORD: ${{ secrets.ANACONDA_PASSWORD }}
|
||||
@@ -11,7 +9,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
python: [3.7, 3.8]
|
||||
package: [spleeter]
|
||||
package: [spleeter, spleeter-gpu]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
38
.github/workflows/pypi.yml
vendored
38
.github/workflows/pypi.yml
vendored
@@ -4,40 +4,22 @@ on:
|
||||
branches:
|
||||
- master
|
||||
env:
|
||||
TWINE_USERNAME: ${{ secrets.TWINE_USERNAME }}
|
||||
TWINE_PASSWORD: ${{ secrets.TWINE_PASSWORD }}
|
||||
PYPI_TOKEN: ${{ secrets.PYPI_TOKEN }}
|
||||
jobs:
|
||||
package-and-deploy:
|
||||
strategy:
|
||||
matrix:
|
||||
platform: [cpu, gpu]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: 3.7
|
||||
- uses: actions/cache@v2
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/setup.py') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pip-
|
||||
- uses: actions/cache@v2
|
||||
with:
|
||||
path: ${{ env.GITHUB_WORKSPACE }}/dist
|
||||
key: sdist-${{ matrix.platform }}-${{ hashFiles('**/setup.py') }}
|
||||
restore-keys: |
|
||||
sdist-${{ matrix.platform }}-${{ hashFiles('**/setup.py') }}
|
||||
sdist-${{ matrix.platform }}
|
||||
sdist-
|
||||
- name: Install dependencies
|
||||
run: pip install --upgrade pip setuptools twine
|
||||
- if: ${{ matrix.platform == 'cpu' }}
|
||||
name: Package CPU distribution
|
||||
run: make build
|
||||
- if: ${{ matrix.platform == 'gpu' }}
|
||||
name: Package GPU distribution)
|
||||
run: make build-gpu
|
||||
- name: Install Poetry
|
||||
run: |
|
||||
pip install poetry
|
||||
poetry config virtualenvs.in-project false
|
||||
poetry config virtualenvs.path ~/.virtualenvs
|
||||
poetry config pypi-token.pypi $PYPI_TOKEN
|
||||
- name: Deploy to pypi
|
||||
run: make deploy
|
||||
run: |
|
||||
poetry build
|
||||
poetry publish
|
||||
41
.github/workflows/pytest.yml
vendored
41
.github/workflows/pytest.yml
vendored
@@ -1,41 +0,0 @@
|
||||
name: pytest
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
jobs:
|
||||
tests:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: [3.6, 3.7, 3.8]
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- uses: actions/cache@v2
|
||||
id: spleeter-pip-cache
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/setup.py') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pip-
|
||||
- uses: actions/cache@v2
|
||||
env:
|
||||
model-release: 1
|
||||
id: spleeter-model-cache
|
||||
with:
|
||||
path: ${{ env.GITHUB_WORKSPACE }}/pretrained_models
|
||||
key: models-${{ env.model-release }}
|
||||
restore-keys: |
|
||||
models-${{ env.model-release }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt-get update && sudo apt-get install -y ffmpeg
|
||||
pip install --upgrade pip setuptools
|
||||
pip install pytest==5.4.3 pytest-xdist==1.32.0 pytest-forked==1.1.3 musdb museval
|
||||
python setup.py install
|
||||
- name: Test with pytest
|
||||
run: make test
|
||||
51
.github/workflows/test.yml
vendored
Normal file
51
.github/workflows/test.yml
vendored
Normal file
@@ -0,0 +1,51 @@
|
||||
name: test
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
jobs:
|
||||
tests:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: [3.7, 3.8]
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- uses: actions/cache@v2
|
||||
env:
|
||||
model-release: 1
|
||||
id: spleeter-model-cache
|
||||
with:
|
||||
path: ${{ env.GITHUB_WORKSPACE }}/pretrained_models
|
||||
key: models-${{ env.model-release }}
|
||||
restore-keys: |
|
||||
models-${{ env.model-release }}
|
||||
- name: Install ffmpeg
|
||||
run: |
|
||||
sudo apt-get update && sudo apt-get install -y ffmpeg
|
||||
- name: Install Poetry
|
||||
run: |
|
||||
pip install poetry
|
||||
poetry config virtualenvs.in-project false
|
||||
poetry config virtualenvs.path ~/.virtualenvs
|
||||
- name: Cache Poetry virtualenv
|
||||
uses: actions/cache@v1
|
||||
id: cache
|
||||
with:
|
||||
path: ~/.virtualenvs
|
||||
key: poetry-${{ matrix.python-version }}-${{ hashFiles('**/poetry.lock') }}
|
||||
restore-keys: |
|
||||
poetry-${{ matrix.python-version }}-${{ hashFiles('**/poetry.lock') }}
|
||||
- name: Install Dependencies
|
||||
run: poetry install
|
||||
if: steps.cache.outputs.cache-hit != 'true'
|
||||
- name: Code quality checks
|
||||
run: |
|
||||
poetry run black spleeter --check
|
||||
poetry run isort spleeter --check
|
||||
- name: Test with pytest
|
||||
run: poetry run pytest tests/
|
||||
22
CHANGELOG.md
22
CHANGELOG.md
@@ -1,5 +1,27 @@
|
||||
# Changelog History
|
||||
|
||||
## 2.1.0
|
||||
|
||||
This version introduce design related changes, especially transition to Typer for CLI managment and Poetry as
|
||||
library build backend.
|
||||
|
||||
* `-i` option is now deprecated and replaced by traditional CLI input argument listing
|
||||
* Project is now built using Poetry
|
||||
* Project requires code formatting using Black and iSort
|
||||
* Dedicated GPU package `spleeter-gpu` is not supported anymore, `spleeter` package will support both CPU and GPU hardware
|
||||
|
||||
### API changes:
|
||||
|
||||
* function `get_default_audio_adapter` is now available as `default()` class method within `AudioAdapter` class
|
||||
* function `get_default_model_provider` is now available as `default()` class method within `ModelProvider` class
|
||||
* `STFTBackend` and `Codec` are now string enum
|
||||
* `GithubModelProvider` now use `httpx` with HTTP/2 support
|
||||
* Commands are now located in `__main__` module, wrapped as simple function using Typer options module provide specification for each available option and argument
|
||||
* `types` module provide custom type specification and must be enhanced in future release to provide more robust typing support with MyPy
|
||||
* `utils.logging` module has been cleaned, logger instance is now a module singleton, and a single function is used to configure it with verbose parameter
|
||||
* Added a custom logger handler (see tiangolo/typer#203 discussion)
|
||||
|
||||
|
||||
## 2.0
|
||||
|
||||
First release, October 9th 2020
|
||||
|
||||
@@ -1,3 +0,0 @@
|
||||
include spleeter/resources/*.json
|
||||
include README.md
|
||||
include LICENSE
|
||||
34
Makefile
34
Makefile
@@ -1,34 +0,0 @@
|
||||
# =======================================================
|
||||
# Library lifecycle management.
|
||||
#
|
||||
# @author Deezer Research <spleeter@deezer.com>
|
||||
# @licence MIT Licence
|
||||
# =======================================================
|
||||
|
||||
FEEDSTOCK = spleeter-feedstock
|
||||
FEEDSTOCK_REPOSITORY = https://github.com/deezer/$(FEEDSTOCK)
|
||||
FEEDSTOCK_RECIPE = $(FEEDSTOCK)/recipe/spleeter/meta.yaml
|
||||
PYTEST_CMD = pytest -W ignore::FutureWarning -W ignore::DeprecationWarning -vv --forked
|
||||
|
||||
all: clean build test deploy
|
||||
|
||||
clean:
|
||||
rm -Rf *.egg-info
|
||||
rm -Rf dist
|
||||
|
||||
build: clean
|
||||
sed -i "s/project_name = '[^']*'/project_name = 'spleeter'/g" setup.py
|
||||
sed -i "s/tensorflow_dependency = '[^']*'/tensorflow_dependency = 'tensorflow'/g" setup.py
|
||||
python3 setup.py sdist
|
||||
|
||||
build-gpu: clean
|
||||
sed -i "s/project_name = '[^']*'/project_name = 'spleeter-gpu'/g" setup.py
|
||||
sed -i "s/tensorflow_dependency = '[^']*'/tensorflow_dependency = 'tensorflow-gpu'/g" setup.py
|
||||
python3 setup.py sdist
|
||||
|
||||
test:
|
||||
$(PYTEST_CMD) tests/
|
||||
|
||||
deploy:
|
||||
pip install twine
|
||||
twine upload --skip-existing dist/*
|
||||
18
README.md
18
README.md
@@ -2,6 +2,9 @@
|
||||
|
||||
[](https://github.com/deezer/spleeter/actions)  [](https://badge.fury.io/py/spleeter) [](https://anaconda.org/conda-forge/spleeter) [](https://hub.docker.com/r/researchdeezer/spleeter) [](https://colab.research.google.com/github/deezer/spleeter/blob/master/spleeter.ipynb) [](https://gitter.im/spleeter/community) [](https://joss.theoj.org/papers/259e5efe669945a343bad6eccb89018b)
|
||||
|
||||
> :warning: [Spleeter 2.1.0](https://pypi.org/project/spleeter/) release introduces some breaking changes, including new CLI option naming for input, and the drop
|
||||
> of dedicated GPU package. Please read [CHANGELOG](CHANGELOG.md) for more details.
|
||||
|
||||
## About
|
||||
|
||||
**Spleeter** is [Deezer](https://www.deezer.com/) source separation library with pretrained models
|
||||
@@ -46,7 +49,7 @@ conda install -c conda-forge spleeter
|
||||
# download an example audio file (if you don't have wget, use another tool for downloading)
|
||||
wget https://github.com/deezer/spleeter/raw/master/audio_example.mp3
|
||||
# separate the example audio into two components
|
||||
spleeter separate -i audio_example.mp3 -p spleeter:2stems -o output
|
||||
spleeter separate -p spleeter:2stems -o output audio_example.mp3
|
||||
```
|
||||
|
||||
You should get two separated audio files (`vocals.wav` and `accompaniment.wav`) in the `output/audio_example` folder.
|
||||
@@ -55,13 +58,18 @@ For a detailed documentation, please check the [repository wiki](https://github.
|
||||
|
||||
## Development and Testing
|
||||
|
||||
The following set of commands will clone this repository, create a virtual environment provisioned with the dependencies and run the tests (will take a few minutes):
|
||||
This project is managed using [Poetry](https://python-poetry.org/docs/basic-usage/), to run test suite you
|
||||
can execute the following set of commands:
|
||||
|
||||
```bash
|
||||
# Clone spleeter repository
|
||||
git clone https://github.com/Deezer/spleeter && cd spleeter
|
||||
python -m venv spleeterenv && source spleeterenv/bin/activate
|
||||
pip install . && pip install pytest pytest-xdist
|
||||
make test
|
||||
# Install poetry
|
||||
pip install poetry
|
||||
# Install spleeter dependencies
|
||||
poetry install
|
||||
# Run unit test suite
|
||||
poetry run pytest tests/
|
||||
```
|
||||
|
||||
## Reference
|
||||
|
||||
52
conda/spleeter-gpu/meta.yaml
Normal file
52
conda/spleeter-gpu/meta.yaml
Normal file
@@ -0,0 +1,52 @@
|
||||
{% set name = "spleeter-gpu" %}
|
||||
{% set version = "2.0.2" %}
|
||||
|
||||
package:
|
||||
name: {{ name|lower }}
|
||||
version: {{ version }}
|
||||
|
||||
source:
|
||||
- url: https://pypi.io/packages/source/{{ name[0] }}/{{ name }}/{{ name }}-{{ version }}.tar.gz
|
||||
sha256: ecd3518a98f9978b9088d1cb2ef98f766401fd9007c2bf72a34e5b5bc5a6fdc3
|
||||
|
||||
build:
|
||||
number: 0
|
||||
script: {{ PYTHON }} -m pip install . -vv
|
||||
skip: True # [osx]
|
||||
entry_points:
|
||||
- spleeter = spleeter.__main__:entrypoint
|
||||
|
||||
requirements:
|
||||
host:
|
||||
- python {{ python }}
|
||||
- pip
|
||||
run:
|
||||
- python {{ python }}
|
||||
- tensorflow-gpu ==2.2.0 # [linux]
|
||||
- tensorflow-gpu ==23.0 # [win]
|
||||
- pandas
|
||||
- ffmpeg-python
|
||||
- norbert
|
||||
- librosa
|
||||
|
||||
test:
|
||||
imports:
|
||||
- spleeter
|
||||
- spleeter.commands
|
||||
- spleeter.model
|
||||
- spleeter.utils
|
||||
- spleeter.separator
|
||||
|
||||
about:
|
||||
home: https://github.com/deezer/spleeter
|
||||
license: MIT
|
||||
license_family: MIT
|
||||
license_file: LICENSE
|
||||
summary: The Deezer source separation library with pretrained models based on tensorflow.
|
||||
doc_url: https://github.com/deezer/spleeter/wiki
|
||||
dev_url: https://github.com/deezer/spleeter
|
||||
|
||||
extra:
|
||||
recipe-maintainers:
|
||||
- Faylixe
|
||||
- romi1502
|
||||
@@ -1,3 +0,0 @@
|
||||
python:
|
||||
- 3.7
|
||||
- 3.8
|
||||
1880
poetry.lock
generated
Normal file
1880
poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
83
pyproject.toml
Normal file
83
pyproject.toml
Normal file
@@ -0,0 +1,83 @@
|
||||
[tool.poetry]
|
||||
name = "spleeter"
|
||||
version = "2.1.0"
|
||||
description = "The Deezer source separation library with pretrained models based on tensorflow."
|
||||
authors = ["Deezer Research <spleeter@deezer.com>"]
|
||||
license = "MIT License"
|
||||
readme = "README.md"
|
||||
repository = "https://github.com/deezer/spleeter"
|
||||
homepage = "https://github.com/deezer/spleeter"
|
||||
classifiers = [
|
||||
"Environment :: Console",
|
||||
"Environment :: MacOS X",
|
||||
"Intended Audience :: Developers",
|
||||
"Intended Audience :: Information Technology",
|
||||
"Intended Audience :: Science/Research",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Natural Language :: English",
|
||||
"Operating System :: MacOS",
|
||||
"Operating System :: Microsoft :: Windows",
|
||||
"Operating System :: POSIX :: Linux",
|
||||
"Operating System :: Unix",
|
||||
"Programming Language :: Python",
|
||||
"Programming Language :: Python :: 3",
|
||||
"Programming Language :: Python :: 3.6",
|
||||
"Programming Language :: Python :: 3.7",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3 :: Only",
|
||||
"Programming Language :: Python :: Implementation :: CPython",
|
||||
"Topic :: Artistic Software",
|
||||
"Topic :: Multimedia",
|
||||
"Topic :: Multimedia :: Sound/Audio",
|
||||
"Topic :: Multimedia :: Sound/Audio :: Analysis",
|
||||
"Topic :: Multimedia :: Sound/Audio :: Conversion",
|
||||
"Topic :: Multimedia :: Sound/Audio :: Sound Synthesis",
|
||||
"Topic :: Scientific/Engineering",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"Topic :: Scientific/Engineering :: Information Analysis",
|
||||
"Topic :: Software Development",
|
||||
"Topic :: Software Development :: Libraries",
|
||||
"Topic :: Software Development :: Libraries :: Python Modules",
|
||||
"Topic :: Utilities"
|
||||
]
|
||||
packages = [ { include = "spleeter" } ]
|
||||
include = ["LICENSE", "spleeter/resources/*.json"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.7"
|
||||
ffmpeg-python = "0.2.0"
|
||||
norbert = "0.2.1"
|
||||
httpx = {extras = ["http2"], version = "^0.16.1"}
|
||||
typer = "^0.3.2"
|
||||
librosa = "0.8.0"
|
||||
musdb = {version = "0.3.1", optional = true}
|
||||
museval = {version = "0.3.0", optional = true}
|
||||
tensorflow = "2.3.0"
|
||||
pandas = "1.1.2"
|
||||
numpy = "<1.19.0,>=1.16.0"
|
||||
|
||||
[tool.poetry.dev-dependencies]
|
||||
pytest = "^6.2.1"
|
||||
isort = "^5.7.0"
|
||||
black = "^20.8b1"
|
||||
mypy = "^0.790"
|
||||
pytest-forked = "^1.3.0"
|
||||
musdb = "0.3.1"
|
||||
museval = "0.3.0"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
spleeter = 'spleeter.__main__:entrypoint'
|
||||
|
||||
[tool.poetry.extras]
|
||||
evaluation = ["musdb", "museval"]
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
multi_line_output = 3
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
addopts = "-W ignore::FutureWarning -W ignore::DeprecationWarning -vv --forked"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
102
setup.py
102
setup.py
@@ -1,102 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
""" Distribution script. """
|
||||
|
||||
import sys
|
||||
|
||||
from os import path
|
||||
from setuptools import setup
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
|
||||
# Default project values.
|
||||
project_name = 'spleeter'
|
||||
project_version = '2.0.2'
|
||||
tensorflow_dependency = 'tensorflow'
|
||||
tensorflow_version = '2.3.0'
|
||||
here = path.abspath(path.dirname(__file__))
|
||||
readme_path = path.join(here, 'README.md')
|
||||
with open(readme_path, 'r') as stream:
|
||||
readme = stream.read()
|
||||
|
||||
# Package setup entrypoint.
|
||||
setup(
|
||||
name=project_name,
|
||||
version=project_version,
|
||||
description='''
|
||||
The Deezer source separation library with
|
||||
pretrained models based on tensorflow.
|
||||
''',
|
||||
long_description=readme,
|
||||
long_description_content_type='text/markdown',
|
||||
author='Deezer Research',
|
||||
author_email='spleeter@deezer.com',
|
||||
url='https://github.com/deezer/spleeter',
|
||||
license='MIT License',
|
||||
packages=[
|
||||
'spleeter',
|
||||
'spleeter.audio',
|
||||
'spleeter.commands',
|
||||
'spleeter.model',
|
||||
'spleeter.model.functions',
|
||||
'spleeter.model.provider',
|
||||
'spleeter.resources',
|
||||
'spleeter.utils',
|
||||
],
|
||||
package_data={'spleeter.resources': ['*.json']},
|
||||
python_requires='>=3.6, <3.9',
|
||||
include_package_data=True,
|
||||
install_requires=[
|
||||
'ffmpeg-python==0.2.0',
|
||||
'importlib_resources ; python_version<"3.7"',
|
||||
'norbert==0.2.1',
|
||||
'numpy<1.19.0,>=1.16.0',
|
||||
'pandas==1.1.2',
|
||||
'requests',
|
||||
'scipy==1.4.1',
|
||||
'setuptools>=41.0.0',
|
||||
'librosa==0.8.0',
|
||||
'{}=={}'.format(tensorflow_dependency, tensorflow_version),
|
||||
],
|
||||
extras_require={
|
||||
'evaluation': ['musdb==0.3.1', 'museval==0.3.0']
|
||||
},
|
||||
entry_points={
|
||||
'console_scripts': ['spleeter=spleeter.__main__:entrypoint']
|
||||
},
|
||||
classifiers=[
|
||||
'Environment :: Console',
|
||||
'Environment :: MacOS X',
|
||||
'Intended Audience :: Developers',
|
||||
'Intended Audience :: Information Technology',
|
||||
'Intended Audience :: Science/Research',
|
||||
'License :: OSI Approved :: MIT License',
|
||||
'Natural Language :: English',
|
||||
'Operating System :: MacOS',
|
||||
'Operating System :: Microsoft :: Windows',
|
||||
'Operating System :: POSIX :: Linux',
|
||||
'Operating System :: Unix',
|
||||
'Programming Language :: Python',
|
||||
'Programming Language :: Python :: 3',
|
||||
'Programming Language :: Python :: 3.6',
|
||||
'Programming Language :: Python :: 3.7',
|
||||
'Programming Language :: Python :: 3.8',
|
||||
'Programming Language :: Python :: 3 :: Only',
|
||||
'Programming Language :: Python :: Implementation :: CPython',
|
||||
'Topic :: Artistic Software',
|
||||
'Topic :: Multimedia',
|
||||
'Topic :: Multimedia :: Sound/Audio',
|
||||
'Topic :: Multimedia :: Sound/Audio :: Analysis',
|
||||
'Topic :: Multimedia :: Sound/Audio :: Conversion',
|
||||
'Topic :: Multimedia :: Sound/Audio :: Sound Synthesis',
|
||||
'Topic :: Scientific/Engineering',
|
||||
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
||||
'Topic :: Scientific/Engineering :: Information Analysis',
|
||||
'Topic :: Software Development',
|
||||
'Topic :: Software Development :: Libraries',
|
||||
'Topic :: Software Development :: Libraries :: Python Modules',
|
||||
'Topic :: Utilities']
|
||||
)
|
||||
@@ -13,9 +13,9 @@
|
||||
by providing train, evaluation and source separation action.
|
||||
"""
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
class SpleeterError(Exception):
|
||||
|
||||
@@ -5,54 +5,252 @@
|
||||
Python oneliner script usage.
|
||||
|
||||
USAGE: python -m spleeter {train,evaluate,separate} ...
|
||||
|
||||
Notes:
|
||||
All critical import involving TF, numpy or Pandas are deported to
|
||||
command function scope to avoid heavy import on CLI evaluation,
|
||||
leading to large bootstraping time.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import warnings
|
||||
import json
|
||||
from functools import partial
|
||||
from glob import glob
|
||||
from itertools import product
|
||||
from os.path import join
|
||||
from pathlib import Path
|
||||
from typing import Container, Dict, List, Optional
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
from typer import Exit, Typer
|
||||
|
||||
from . import SpleeterError
|
||||
from .commands import create_argument_parser
|
||||
from .utils.configuration import load_configuration
|
||||
from .utils.logging import (
|
||||
enable_logging,
|
||||
enable_tensorflow_logging,
|
||||
get_logger)
|
||||
from .options import *
|
||||
from .utils.logging import configure_logger, logger
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
# pylint: enable=import-error
|
||||
|
||||
spleeter: Typer = Typer(add_completion=False)
|
||||
""" CLI application. """
|
||||
|
||||
|
||||
def main(argv):
|
||||
""" Spleeter runner. Parse provided command line arguments
|
||||
and run entrypoint for required command (either train,
|
||||
evaluate or separate).
|
||||
|
||||
:param argv: Provided command line arguments.
|
||||
@spleeter.command()
|
||||
def train(
|
||||
adapter: str = AudioAdapterOption,
|
||||
data: Path = TrainingDataDirectoryOption,
|
||||
params_filename: str = ModelParametersOption,
|
||||
verbose: bool = VerboseOption,
|
||||
) -> None:
|
||||
"""
|
||||
Train a source separation model
|
||||
"""
|
||||
import tensorflow as tf
|
||||
|
||||
from .audio.adapter import AudioAdapter
|
||||
from .dataset import get_training_dataset, get_validation_dataset
|
||||
from .model import model_fn
|
||||
from .model.provider import ModelProvider
|
||||
from .utils.configuration import load_configuration
|
||||
|
||||
configure_logger(verbose)
|
||||
audio_adapter = AudioAdapter.get(adapter)
|
||||
audio_path = str(data)
|
||||
params = load_configuration(params_filename)
|
||||
session_config = tf.compat.v1.ConfigProto()
|
||||
session_config.gpu_options.per_process_gpu_memory_fraction = 0.45
|
||||
estimator = tf.estimator.Estimator(
|
||||
model_fn=model_fn,
|
||||
model_dir=params["model_dir"],
|
||||
params=params,
|
||||
config=tf.estimator.RunConfig(
|
||||
save_checkpoints_steps=params["save_checkpoints_steps"],
|
||||
tf_random_seed=params["random_seed"],
|
||||
save_summary_steps=params["save_summary_steps"],
|
||||
session_config=session_config,
|
||||
log_step_count_steps=10,
|
||||
keep_checkpoint_max=2,
|
||||
),
|
||||
)
|
||||
input_fn = partial(get_training_dataset, params, audio_adapter, audio_path)
|
||||
train_spec = tf.estimator.TrainSpec(
|
||||
input_fn=input_fn, max_steps=params["train_max_steps"]
|
||||
)
|
||||
input_fn = partial(get_validation_dataset, params, audio_adapter, audio_path)
|
||||
evaluation_spec = tf.estimator.EvalSpec(
|
||||
input_fn=input_fn, steps=None, throttle_secs=params["throttle_secs"]
|
||||
)
|
||||
logger.info("Start model training")
|
||||
tf.estimator.train_and_evaluate(estimator, train_spec, evaluation_spec)
|
||||
ModelProvider.writeProbe(params["model_dir"])
|
||||
logger.info("Model training done")
|
||||
|
||||
|
||||
@spleeter.command()
|
||||
def separate(
|
||||
deprecated_files: Optional[str] = AudioInputOption,
|
||||
files: List[Path] = AudioInputArgument,
|
||||
adapter: str = AudioAdapterOption,
|
||||
bitrate: str = AudioBitrateOption,
|
||||
codec: Codec = AudioCodecOption,
|
||||
duration: float = AudioDurationOption,
|
||||
offset: float = AudioOffsetOption,
|
||||
output_path: Path = AudioOutputOption,
|
||||
stft_backend: STFTBackend = AudioSTFTBackendOption,
|
||||
filename_format: str = FilenameFormatOption,
|
||||
params_filename: str = ModelParametersOption,
|
||||
mwf: bool = MWFOption,
|
||||
verbose: bool = VerboseOption,
|
||||
) -> None:
|
||||
"""
|
||||
Separate audio file(s)
|
||||
"""
|
||||
from .audio.adapter import AudioAdapter
|
||||
from .separator import Separator
|
||||
|
||||
configure_logger(verbose)
|
||||
if deprecated_files is not None:
|
||||
logger.error(
|
||||
"⚠️ -i option is not supported anymore, audio files must be supplied "
|
||||
"using input argument instead (see spleeter separate --help)"
|
||||
)
|
||||
raise Exit(20)
|
||||
audio_adapter: AudioAdapter = AudioAdapter.get(adapter)
|
||||
separator: Separator = Separator(
|
||||
params_filename, MWF=mwf, stft_backend=stft_backend
|
||||
)
|
||||
for filename in files:
|
||||
separator.separate_to_file(
|
||||
str(filename),
|
||||
str(output_path),
|
||||
audio_adapter=audio_adapter,
|
||||
offset=offset,
|
||||
duration=duration,
|
||||
codec=codec,
|
||||
bitrate=bitrate,
|
||||
filename_format=filename_format,
|
||||
synchronous=False,
|
||||
)
|
||||
separator.join()
|
||||
|
||||
|
||||
EVALUATION_SPLIT: str = "test"
|
||||
EVALUATION_METRICS_DIRECTORY: str = "metrics"
|
||||
EVALUATION_INSTRUMENTS: Container[str] = ("vocals", "drums", "bass", "other")
|
||||
EVALUATION_METRICS: Container[str] = ("SDR", "SAR", "SIR", "ISR")
|
||||
EVALUATION_MIXTURE: str = "mixture.wav"
|
||||
EVALUATION_AUDIO_DIRECTORY: str = "audio"
|
||||
|
||||
|
||||
def _compile_metrics(metrics_output_directory) -> Dict:
|
||||
"""
|
||||
Compiles metrics from given directory and returns results as dict.
|
||||
|
||||
Parameters:
|
||||
metrics_output_directory (str):
|
||||
Directory to get metrics from.
|
||||
|
||||
Returns:
|
||||
Dict:
|
||||
Compiled metrics as dict.
|
||||
"""
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
songs = glob(join(metrics_output_directory, "test/*.json"))
|
||||
index = pd.MultiIndex.from_tuples(
|
||||
product(EVALUATION_INSTRUMENTS, EVALUATION_METRICS),
|
||||
names=["instrument", "metric"],
|
||||
)
|
||||
pd.DataFrame([], index=["config1", "config2"], columns=index)
|
||||
metrics = {
|
||||
instrument: {k: [] for k in EVALUATION_METRICS}
|
||||
for instrument in EVALUATION_INSTRUMENTS
|
||||
}
|
||||
for song in songs:
|
||||
with open(song, "r") as stream:
|
||||
data = json.load(stream)
|
||||
for target in data["targets"]:
|
||||
instrument = target["name"]
|
||||
for metric in EVALUATION_METRICS:
|
||||
sdr_med = np.median(
|
||||
[
|
||||
frame["metrics"][metric]
|
||||
for frame in target["frames"]
|
||||
if not np.isnan(frame["metrics"][metric])
|
||||
]
|
||||
)
|
||||
metrics[instrument][metric].append(sdr_med)
|
||||
return metrics
|
||||
|
||||
|
||||
@spleeter.command()
|
||||
def evaluate(
|
||||
adapter: str = AudioAdapterOption,
|
||||
output_path: Path = AudioOutputOption,
|
||||
stft_backend: STFTBackend = AudioSTFTBackendOption,
|
||||
params_filename: str = ModelParametersOption,
|
||||
mus_dir: Path = MUSDBDirectoryOption,
|
||||
mwf: bool = MWFOption,
|
||||
verbose: bool = VerboseOption,
|
||||
) -> Dict:
|
||||
"""
|
||||
Evaluate a model on the musDB test dataset
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
configure_logger(verbose)
|
||||
try:
|
||||
parser = create_argument_parser()
|
||||
arguments = parser.parse_args(argv[1:])
|
||||
enable_logging()
|
||||
if arguments.verbose:
|
||||
enable_tensorflow_logging()
|
||||
if arguments.command == 'separate':
|
||||
from .commands.separate import entrypoint
|
||||
elif arguments.command == 'train':
|
||||
from .commands.train import entrypoint
|
||||
elif arguments.command == 'evaluate':
|
||||
from .commands.evaluate import entrypoint
|
||||
params = load_configuration(arguments.configuration)
|
||||
entrypoint(arguments, params)
|
||||
except SpleeterError as e:
|
||||
get_logger().error(e)
|
||||
import musdb
|
||||
import museval
|
||||
except ImportError:
|
||||
logger.error("Extra dependencies musdb and museval not found")
|
||||
logger.error("Please install musdb and museval first, abort")
|
||||
raise Exit(10)
|
||||
# Separate musdb sources.
|
||||
songs = glob(join(mus_dir, EVALUATION_SPLIT, "*/"))
|
||||
mixtures = [join(song, EVALUATION_MIXTURE) for song in songs]
|
||||
audio_output_directory = join(output_path, EVALUATION_AUDIO_DIRECTORY)
|
||||
separate(
|
||||
deprecated_files=None,
|
||||
files=mixtures,
|
||||
adapter=adapter,
|
||||
bitrate="128k",
|
||||
codec=Codec.WAV,
|
||||
duration=600.0,
|
||||
offset=0,
|
||||
output_path=join(audio_output_directory, EVALUATION_SPLIT),
|
||||
stft_backend=stft_backend,
|
||||
filename_format="{foldername}/{instrument}.{codec}",
|
||||
params_filename=params_filename,
|
||||
mwf=mwf,
|
||||
verbose=verbose,
|
||||
)
|
||||
# Compute metrics with musdb.
|
||||
metrics_output_directory = join(output_path, EVALUATION_METRICS_DIRECTORY)
|
||||
logger.info("Starting musdb evaluation (this could be long) ...")
|
||||
dataset = musdb.DB(root=mus_dir, is_wav=True, subsets=[EVALUATION_SPLIT])
|
||||
museval.eval_mus_dir(
|
||||
dataset=dataset,
|
||||
estimates_dir=audio_output_directory,
|
||||
output_dir=metrics_output_directory,
|
||||
)
|
||||
logger.info("musdb evaluation done")
|
||||
# Compute and pretty print median metrics.
|
||||
metrics = _compile_metrics(metrics_output_directory)
|
||||
for instrument, metric in metrics.items():
|
||||
logger.info(f"{instrument}:")
|
||||
for metric, value in metric.items():
|
||||
logger.info(f"{metric}: {np.median(value):.3f}")
|
||||
return metrics
|
||||
|
||||
|
||||
def entrypoint():
|
||||
""" Command line entrypoint. """
|
||||
warnings.filterwarnings('ignore')
|
||||
main(sys.argv)
|
||||
""" Application entrypoint. """
|
||||
try:
|
||||
spleeter()
|
||||
except SpleeterError as e:
|
||||
logger.error(e)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
entrypoint()
|
||||
|
||||
@@ -10,6 +10,43 @@
|
||||
- Waveform convertion and transforming functions.
|
||||
"""
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
from enum import Enum
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
class Codec(str, Enum):
|
||||
""" Enumeration of supported audio codec. """
|
||||
|
||||
WAV: str = "wav"
|
||||
MP3: str = "mp3"
|
||||
OGG: str = "ogg"
|
||||
M4A: str = "m4a"
|
||||
WMA: str = "wma"
|
||||
FLAC: str = "flac"
|
||||
|
||||
|
||||
class STFTBackend(str, Enum):
|
||||
""" Enumeration of supported STFT backend. """
|
||||
|
||||
AUTO: str = "auto"
|
||||
TENSORFLOW: str = "tensorflow"
|
||||
LIBROSA: str = "librosa"
|
||||
|
||||
@classmethod
|
||||
def resolve(cls: type, backend: str) -> str:
|
||||
# NOTE: import is resolved here to avoid performance issues on command
|
||||
# evaluation.
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import tensorflow as tf
|
||||
|
||||
if backend not in cls.__members__.values():
|
||||
raise ValueError(f"Unsupported backend {backend}")
|
||||
if backend == cls.AUTO:
|
||||
if len(tf.config.list_physical_devices("GPU")):
|
||||
return cls.TENSORFLOW
|
||||
return cls.LIBROSA
|
||||
return backend
|
||||
|
||||
@@ -3,70 +3,101 @@
|
||||
|
||||
""" AudioAdapter class defintion. """
|
||||
|
||||
import subprocess
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from importlib import import_module
|
||||
from os.path import exists
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow.signal import stft, hann_window
|
||||
# pylint: enable=import-error
|
||||
from spleeter.audio import Codec
|
||||
|
||||
from .. import SpleeterError
|
||||
from ..utils.logging import get_logger
|
||||
from ..types import AudioDescriptor, Signal
|
||||
from ..utils.logging import logger
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
# pylint: enable=import-error
|
||||
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
class AudioAdapter(ABC):
|
||||
""" An abstract class for manipulating audio signal. """
|
||||
|
||||
# Default audio adapter singleton instance.
|
||||
DEFAULT = None
|
||||
_DEFAULT: "AudioAdapter" = None
|
||||
""" Default audio adapter singleton instance. """
|
||||
|
||||
@abstractmethod
|
||||
def load(
|
||||
self, audio_descriptor, offset, duration,
|
||||
sample_rate, dtype=np.float32):
|
||||
""" Loads the audio file denoted by the given audio descriptor
|
||||
and returns it data as a waveform. Aims to be implemented
|
||||
by client.
|
||||
self,
|
||||
audio_descriptor: AudioDescriptor,
|
||||
offset: Optional[float] = None,
|
||||
duration: Optional[float] = None,
|
||||
sample_rate: Optional[float] = None,
|
||||
dtype: np.dtype = np.float32,
|
||||
) -> Signal:
|
||||
"""
|
||||
Loads the audio file denoted by the given audio descriptor and
|
||||
returns it data as a waveform. Aims to be implemented by client.
|
||||
|
||||
:param audio_descriptor: Describe song to load, in case of file
|
||||
based audio adapter, such descriptor would
|
||||
be a file path.
|
||||
:param offset: Start offset to load from in seconds.
|
||||
:param duration: Duration to load in seconds.
|
||||
:param sample_rate: Sample rate to load audio with.
|
||||
:param dtype: Numpy data type to use, default to float32.
|
||||
:returns: Loaded data as (wf, sample_rate) tuple.
|
||||
Parameters:
|
||||
audio_descriptor (AudioDescriptor):
|
||||
Describe song to load, in case of file based audio adapter,
|
||||
such descriptor would be a file path.
|
||||
offset (Optional[float]):
|
||||
Start offset to load from in seconds.
|
||||
duration (Optional[float]):
|
||||
Duration to load in seconds.
|
||||
sample_rate (Optional[float]):
|
||||
Sample rate to load audio with.
|
||||
dtype (numpy.dtype):
|
||||
(Optional) Numpy data type to use, default to `float32`.
|
||||
|
||||
Returns:
|
||||
Signal:
|
||||
Loaded data as (wf, sample_rate) tuple.
|
||||
"""
|
||||
pass
|
||||
|
||||
def load_tf_waveform(
|
||||
self, audio_descriptor,
|
||||
offset=0.0, duration=1800., sample_rate=44100,
|
||||
dtype=b'float32', waveform_name='waveform'):
|
||||
""" Load the audio and convert it to a tensorflow waveform.
|
||||
self,
|
||||
audio_descriptor,
|
||||
offset: float = 0.0,
|
||||
duration: float = 1800.0,
|
||||
sample_rate: int = 44100,
|
||||
dtype: bytes = b"float32",
|
||||
waveform_name: str = "waveform",
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Load the audio and convert it to a tensorflow waveform.
|
||||
|
||||
:param audio_descriptor: Describe song to load, in case of file
|
||||
based audio adapter, such descriptor would
|
||||
be a file path.
|
||||
:param offset: Start offset to load from in seconds.
|
||||
:param duration: Duration to load in seconds.
|
||||
:param sample_rate: Sample rate to load audio with.
|
||||
:param dtype: Numpy data type to use, default to float32.
|
||||
:param waveform_name: (Optional) Name of the key in output dict.
|
||||
:returns: TF output dict with waveform as
|
||||
(T x chan numpy array) and a boolean that
|
||||
tells whether there were an error while
|
||||
trying to load the waveform.
|
||||
Parameters:
|
||||
audio_descriptor ():
|
||||
Describe song to load, in case of file based audio adapter,
|
||||
such descriptor would be a file path.
|
||||
offset (float):
|
||||
Start offset to load from in seconds.
|
||||
duration (float):
|
||||
Duration to load in seconds.
|
||||
sample_rate (float):
|
||||
Sample rate to load audio with.
|
||||
dtype (bytes):
|
||||
(Optional)data type to use, default to `b'float32'`.
|
||||
waveform_name (str):
|
||||
(Optional) Name of the key in output dict, default to
|
||||
`'waveform'`.
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]:
|
||||
TF output dict with waveform as `(T x chan numpy array)`
|
||||
and a boolean that tells whether there were an error while
|
||||
trying to load the waveform.
|
||||
"""
|
||||
# Cast parameters to TF format.
|
||||
offset = tf.cast(offset, tf.float64)
|
||||
@@ -74,76 +105,96 @@ class AudioAdapter(ABC):
|
||||
|
||||
# Defined safe loading function.
|
||||
def safe_load(path, offset, duration, sample_rate, dtype):
|
||||
logger = get_logger()
|
||||
logger.info(
|
||||
f'Loading audio {path} from {offset} to {offset + duration}')
|
||||
logger.info(f"Loading audio {path} from {offset} to {offset + duration}")
|
||||
try:
|
||||
(data, _) = self.load(
|
||||
path.numpy(),
|
||||
offset.numpy(),
|
||||
duration.numpy(),
|
||||
sample_rate.numpy(),
|
||||
dtype=dtype.numpy())
|
||||
logger.info('Audio data loaded successfully')
|
||||
dtype=dtype.numpy(),
|
||||
)
|
||||
logger.info("Audio data loaded successfully")
|
||||
return (data, False)
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
'An error occurs while loading audio',
|
||||
exc_info=e)
|
||||
logger.exception("An error occurs while loading audio", exc_info=e)
|
||||
return (np.float32(-1.0), True)
|
||||
|
||||
# Execute function and format results.
|
||||
results = tf.py_function(
|
||||
safe_load,
|
||||
[audio_descriptor, offset, duration, sample_rate, dtype],
|
||||
(tf.float32, tf.bool)),
|
||||
results = (
|
||||
tf.py_function(
|
||||
safe_load,
|
||||
[audio_descriptor, offset, duration, sample_rate, dtype],
|
||||
(tf.float32, tf.bool),
|
||||
),
|
||||
)
|
||||
waveform, error = results[0]
|
||||
return {
|
||||
waveform_name: waveform,
|
||||
f'{waveform_name}_error': error
|
||||
}
|
||||
return {waveform_name: waveform, f"{waveform_name}_error": error}
|
||||
|
||||
@abstractmethod
|
||||
def save(
|
||||
self, path, data, sample_rate,
|
||||
codec=None, bitrate=None):
|
||||
""" Save the given audio data to the file denoted by
|
||||
the given path.
|
||||
self,
|
||||
path: Union[Path, str],
|
||||
data: np.ndarray,
|
||||
sample_rate: float,
|
||||
codec: Codec = None,
|
||||
bitrate: str = None,
|
||||
) -> None:
|
||||
"""
|
||||
Save the given audio data to the file denoted by the given path.
|
||||
|
||||
:param path: Path of the audio file to save data in.
|
||||
:param data: Waveform data to write.
|
||||
:param sample_rate: Sample rate to write file in.
|
||||
:param codec: (Optional) Writing codec to use.
|
||||
:param bitrate: (Optional) Bitrate of the written audio file.
|
||||
Parameters:
|
||||
path (Union[Path, str]):
|
||||
Path like of the audio file to save data in.
|
||||
data (numpy.ndarray):
|
||||
Waveform data to write.
|
||||
sample_rate (float):
|
||||
Sample rate to write file in.
|
||||
codec ():
|
||||
(Optional) Writing codec to use, default to `None`.
|
||||
bitrate (str):
|
||||
(Optional) Bitrate of the written audio file, default to
|
||||
`None`.
|
||||
"""
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def default(cls: type) -> "AudioAdapter":
|
||||
"""
|
||||
Builds and returns a default audio adapter instance.
|
||||
|
||||
def get_default_audio_adapter():
|
||||
""" Builds and returns a default audio adapter instance.
|
||||
Returns:
|
||||
AudioAdapter:
|
||||
Default adapter instance to use.
|
||||
"""
|
||||
if cls._DEFAULT is None:
|
||||
from .ffmpeg import FFMPEGProcessAudioAdapter
|
||||
|
||||
:returns: An audio adapter instance.
|
||||
"""
|
||||
if AudioAdapter.DEFAULT is None:
|
||||
from .ffmpeg import FFMPEGProcessAudioAdapter
|
||||
AudioAdapter.DEFAULT = FFMPEGProcessAudioAdapter()
|
||||
return AudioAdapter.DEFAULT
|
||||
cls._DEFAULT = FFMPEGProcessAudioAdapter()
|
||||
return cls._DEFAULT
|
||||
|
||||
@classmethod
|
||||
def get(cls: type, descriptor: str) -> "AudioAdapter":
|
||||
"""
|
||||
Load dynamically an AudioAdapter from given class descriptor.
|
||||
|
||||
def get_audio_adapter(descriptor):
|
||||
""" Load dynamically an AudioAdapter from given class descriptor.
|
||||
Parameters:
|
||||
descriptor (str):
|
||||
Adapter class descriptor (module.Class)
|
||||
|
||||
:param descriptor: Adapter class descriptor (module.Class)
|
||||
:returns: Created adapter instance.
|
||||
"""
|
||||
if descriptor is None:
|
||||
return get_default_audio_adapter()
|
||||
module_path = descriptor.split('.')
|
||||
adapter_class_name = module_path[-1]
|
||||
module_path = '.'.join(module_path[:-1])
|
||||
adapter_module = import_module(module_path)
|
||||
adapter_class = getattr(adapter_module, adapter_class_name)
|
||||
if not isinstance(adapter_class, AudioAdapter):
|
||||
raise SpleeterError(
|
||||
f'{adapter_class_name} is not a valid AudioAdapter class')
|
||||
return adapter_class()
|
||||
Returns:
|
||||
AudioAdapter:
|
||||
Created adapter instance.
|
||||
"""
|
||||
if not descriptor:
|
||||
return cls.default()
|
||||
module_path: List[str] = descriptor.split(".")
|
||||
adapter_class_name: str = module_path[-1]
|
||||
module_path: str = ".".join(module_path[:-1])
|
||||
adapter_module = import_module(module_path)
|
||||
adapter_class = getattr(adapter_module, adapter_class_name)
|
||||
if not issubclass(adapter_class, AudioAdapter):
|
||||
raise SpleeterError(
|
||||
f"{adapter_class_name} is not a valid AudioAdapter class"
|
||||
)
|
||||
return adapter_class()
|
||||
|
||||
@@ -3,39 +3,54 @@
|
||||
|
||||
""" This module provides audio data convertion functions. """
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
# pylint: enable=import-error
|
||||
|
||||
from ..utils.tensor import from_float32_to_uint8, from_uint8_to_float32
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
# pylint: enable=import-error
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
def to_n_channels(waveform, n_channels):
|
||||
""" Convert a waveform to n_channels by removing or
|
||||
duplicating channels if needed (in tensorflow).
|
||||
def to_n_channels(waveform: tf.Tensor, n_channels: int) -> tf.Tensor:
|
||||
"""
|
||||
Convert a waveform to n_channels by removing or duplicating channels if
|
||||
needed (in tensorflow).
|
||||
|
||||
:param waveform: Waveform to transform.
|
||||
:param n_channels: Number of channel to reshape waveform in.
|
||||
:returns: Reshaped waveform.
|
||||
Parameters:
|
||||
waveform (tensorflow.Tensor):
|
||||
Waveform to transform.
|
||||
n_channels (int):
|
||||
Number of channel to reshape waveform in.
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Reshaped waveform.
|
||||
"""
|
||||
return tf.cond(
|
||||
tf.shape(waveform)[1] >= n_channels,
|
||||
true_fn=lambda: waveform[:, :n_channels],
|
||||
false_fn=lambda: tf.tile(waveform, [1, n_channels])[:, :n_channels]
|
||||
false_fn=lambda: tf.tile(waveform, [1, n_channels])[:, :n_channels],
|
||||
)
|
||||
|
||||
|
||||
def to_stereo(waveform):
|
||||
""" Convert a waveform to stereo by duplicating if mono,
|
||||
or truncating if too many channels.
|
||||
def to_stereo(waveform: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Convert a waveform to stereo by duplicating if mono, or truncating
|
||||
if too many channels.
|
||||
|
||||
:param waveform: a (N, d) numpy array.
|
||||
:returns: A stereo waveform as a (N, 1) numpy array.
|
||||
Parameters:
|
||||
waveform (numpy.ndarray):
|
||||
a `(N, d)` numpy array.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray:
|
||||
A stereo waveform as a `(N, 1)` numpy array.
|
||||
"""
|
||||
if waveform.shape[1] == 1:
|
||||
return np.repeat(waveform, 2, axis=-1)
|
||||
@@ -44,45 +59,81 @@ def to_stereo(waveform):
|
||||
return waveform
|
||||
|
||||
|
||||
def gain_to_db(tensor, espilon=10e-10):
|
||||
""" Convert from gain to decibel in tensorflow.
|
||||
|
||||
:param tensor: Tensor to convert.
|
||||
:param epsilon: Operation constant.
|
||||
:returns: Converted tensor.
|
||||
def gain_to_db(tensor: tf.Tensor, espilon: float = 10e-10) -> tf.Tensor:
|
||||
"""
|
||||
return 20. / np.log(10) * tf.math.log(tf.maximum(tensor, espilon))
|
||||
Convert from gain to decibel in tensorflow.
|
||||
|
||||
Parameters:
|
||||
tensor (tensorflow.Tensor):
|
||||
Tensor to convert
|
||||
epsilon (float):
|
||||
Operation constant.
|
||||
|
||||
def db_to_gain(tensor):
|
||||
""" Convert from decibel to gain in tensorflow.
|
||||
|
||||
:param tensor_db: Tensor to convert.
|
||||
:returns: Converted tensor.
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Converted tensor.
|
||||
"""
|
||||
return tf.pow(10., (tensor / 20.))
|
||||
return 20.0 / np.log(10) * tf.math.log(tf.maximum(tensor, espilon))
|
||||
|
||||
|
||||
def spectrogram_to_db_uint(spectrogram, db_range=100., **kwargs):
|
||||
""" Encodes given spectrogram into uint8 using decibel scale.
|
||||
|
||||
:param spectrogram: Spectrogram to be encoded as TF float tensor.
|
||||
:param db_range: Range in decibel for encoding.
|
||||
:returns: Encoded decibel spectrogram as uint8 tensor.
|
||||
def db_to_gain(tensor: tf.Tensor) -> tf.Tensor:
|
||||
"""
|
||||
db_spectrogram = gain_to_db(spectrogram)
|
||||
max_db_spectrogram = tf.reduce_max(db_spectrogram)
|
||||
db_spectrogram = tf.maximum(db_spectrogram, max_db_spectrogram - db_range)
|
||||
Convert from decibel to gain in tensorflow.
|
||||
|
||||
Parameters:
|
||||
tensor (tensorflow.Tensor):
|
||||
Tensor to convert
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Converted tensor.
|
||||
"""
|
||||
return tf.pow(10.0, (tensor / 20.0))
|
||||
|
||||
|
||||
def spectrogram_to_db_uint(
|
||||
spectrogram: tf.Tensor, db_range: float = 100.0, **kwargs
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
Encodes given spectrogram into uint8 using decibel scale.
|
||||
|
||||
Parameters:
|
||||
spectrogram (tensorflow.Tensor):
|
||||
Spectrogram to be encoded as TF float tensor.
|
||||
db_range (float):
|
||||
Range in decibel for encoding.
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Encoded decibel spectrogram as `uint8` tensor.
|
||||
"""
|
||||
db_spectrogram: tf.Tensor = gain_to_db(spectrogram)
|
||||
max_db_spectrogram: tf.Tensor = tf.reduce_max(db_spectrogram)
|
||||
db_spectrogram: tf.Tensor = tf.maximum(
|
||||
db_spectrogram, max_db_spectrogram - db_range
|
||||
)
|
||||
return from_float32_to_uint8(db_spectrogram, **kwargs)
|
||||
|
||||
|
||||
def db_uint_spectrogram_to_gain(db_uint_spectrogram, min_db, max_db):
|
||||
""" Decode spectrogram from uint8 decibel scale.
|
||||
|
||||
:param db_uint_spectrogram: Decibel pectrogram to decode.
|
||||
:param min_db: Lower bound limit for decoding.
|
||||
:param max_db: Upper bound limit for decoding.
|
||||
:returns: Decoded spectrogram as float2 tensor.
|
||||
def db_uint_spectrogram_to_gain(
|
||||
db_uint_spectrogram: tf.Tensor, min_db: tf.Tensor, max_db: tf.Tensor
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
db_spectrogram = from_uint8_to_float32(db_uint_spectrogram, min_db, max_db)
|
||||
Decode spectrogram from uint8 decibel scale.
|
||||
|
||||
Paramters:
|
||||
db_uint_spectrogram (tensorflow.Tensor):
|
||||
Decibel spectrogram to decode.
|
||||
min_db (tensorflow.Tensor):
|
||||
Lower bound limit for decoding.
|
||||
max_db (tensorflow.Tensor):
|
||||
Upper bound limit for decoding.
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Decoded spectrogram as `float32` tensor.
|
||||
"""
|
||||
db_spectrogram: tf.Tensor = from_uint8_to_float32(
|
||||
db_uint_spectrogram, min_db, max_db
|
||||
)
|
||||
return db_to_gain(db_spectrogram)
|
||||
|
||||
@@ -8,143 +8,178 @@
|
||||
used within this library.
|
||||
"""
|
||||
|
||||
import datetime as dt
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import ffmpeg
|
||||
import numpy as np
|
||||
|
||||
from .. import SpleeterError
|
||||
from ..types import Signal
|
||||
from ..utils.logging import logger
|
||||
from . import Codec
|
||||
from .adapter import AudioAdapter
|
||||
|
||||
# pylint: enable=import-error
|
||||
|
||||
from .adapter import AudioAdapter
|
||||
from .. import SpleeterError
|
||||
from ..utils.logging import get_logger
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
|
||||
|
||||
def _check_ffmpeg_install():
|
||||
""" Ensure FFMPEG binaries are available.
|
||||
|
||||
:raise SpleeterError: If ffmpeg or ffprobe is not found.
|
||||
"""
|
||||
for binary in ('ffmpeg', 'ffprobe'):
|
||||
if shutil.which(binary) is None:
|
||||
raise SpleeterError('{} binary not found'.format(binary))
|
||||
|
||||
|
||||
def _to_ffmpeg_time(n):
|
||||
""" Format number of seconds to time expected by FFMPEG.
|
||||
:param n: Time in seconds to format.
|
||||
:returns: Formatted time in FFMPEG format.
|
||||
"""
|
||||
m, s = divmod(n, 60)
|
||||
h, m = divmod(m, 60)
|
||||
return '%d:%02d:%09.6f' % (h, m, s)
|
||||
|
||||
|
||||
def _to_ffmpeg_codec(codec):
|
||||
ffmpeg_codecs = {
|
||||
'm4a': 'aac',
|
||||
'ogg': 'libvorbis',
|
||||
'wma': 'wmav2',
|
||||
}
|
||||
return ffmpeg_codecs.get(codec) or codec
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
class FFMPEGProcessAudioAdapter(AudioAdapter):
|
||||
""" An AudioAdapter implementation that use FFMPEG binary through
|
||||
"""
|
||||
An AudioAdapter implementation that use FFMPEG binary through
|
||||
subprocess in order to perform I/O operation for audio processing.
|
||||
|
||||
When created, FFMPEG binary path will be checked and expended,
|
||||
raising exception if not found. Such path could be infered using
|
||||
FFMPEG_PATH environment variable.
|
||||
`FFMPEG_PATH` environment variable.
|
||||
"""
|
||||
|
||||
SUPPORTED_CODECS: Dict[Codec, str] = {
|
||||
Codec.M4A: "aac",
|
||||
Codec.OGG: "libvorbis",
|
||||
Codec.WMA: "wmav2",
|
||||
}
|
||||
""" FFMPEG codec name mapping. """
|
||||
|
||||
def __init__(_) -> None:
|
||||
"""
|
||||
Default constructor, ensure FFMPEG binaries are available.
|
||||
|
||||
Raises:
|
||||
SpleeterError:
|
||||
If ffmpeg or ffprobe is not found.
|
||||
"""
|
||||
for binary in ("ffmpeg", "ffprobe"):
|
||||
if shutil.which(binary) is None:
|
||||
raise SpleeterError("{} binary not found".format(binary))
|
||||
|
||||
def load(
|
||||
self, path, offset=None, duration=None,
|
||||
sample_rate=None, dtype=np.float32):
|
||||
""" Loads the audio file denoted by the given path
|
||||
_,
|
||||
path: Union[Path, str],
|
||||
offset: Optional[float] = None,
|
||||
duration: Optional[float] = None,
|
||||
sample_rate: Optional[float] = None,
|
||||
dtype: np.dtype = np.float32,
|
||||
) -> Signal:
|
||||
"""
|
||||
Loads the audio file denoted by the given path
|
||||
and returns it data as a waveform.
|
||||
|
||||
:param path: Path of the audio file to load data from.
|
||||
:param offset: (Optional) Start offset to load from in seconds.
|
||||
:param duration: (Optional) Duration to load in seconds.
|
||||
:param sample_rate: (Optional) Sample rate to load audio with.
|
||||
:param dtype: (Optional) Numpy data type to use, default to float32.
|
||||
:returns: Loaded data a (waveform, sample_rate) tuple.
|
||||
:raise SpleeterError: If any error occurs while loading audio.
|
||||
Parameters:
|
||||
path (Union[Path, str]:
|
||||
Path of the audio file to load data from.
|
||||
offset (Optional[float]):
|
||||
Start offset to load from in seconds.
|
||||
duration (Optional[float]):
|
||||
Duration to load in seconds.
|
||||
sample_rate (Optional[float]):
|
||||
Sample rate to load audio with.
|
||||
dtype (numpy.dtype):
|
||||
(Optional) Numpy data type to use, default to `float32`.
|
||||
|
||||
Returns:
|
||||
Signal:
|
||||
Loaded data a (waveform, sample_rate) tuple.
|
||||
|
||||
Raises:
|
||||
SpleeterError:
|
||||
If any error occurs while loading audio.
|
||||
"""
|
||||
_check_ffmpeg_install()
|
||||
if isinstance(path, Path):
|
||||
path = str(path)
|
||||
if not isinstance(path, str):
|
||||
path = path.decode()
|
||||
try:
|
||||
probe = ffmpeg.probe(path)
|
||||
except ffmpeg._run.Error as e:
|
||||
raise SpleeterError(
|
||||
'An error occurs with ffprobe (see ffprobe output below)\n\n{}'
|
||||
.format(e.stderr.decode()))
|
||||
if 'streams' not in probe or len(probe['streams']) == 0:
|
||||
raise SpleeterError('No stream was found with ffprobe')
|
||||
"An error occurs with ffprobe (see ffprobe output below)\n\n{}".format(
|
||||
e.stderr.decode()
|
||||
)
|
||||
)
|
||||
if "streams" not in probe or len(probe["streams"]) == 0:
|
||||
raise SpleeterError("No stream was found with ffprobe")
|
||||
metadata = next(
|
||||
stream
|
||||
for stream in probe['streams']
|
||||
if stream['codec_type'] == 'audio')
|
||||
n_channels = metadata['channels']
|
||||
stream for stream in probe["streams"] if stream["codec_type"] == "audio"
|
||||
)
|
||||
n_channels = metadata["channels"]
|
||||
if sample_rate is None:
|
||||
sample_rate = metadata['sample_rate']
|
||||
output_kwargs = {'format': 'f32le', 'ar': sample_rate}
|
||||
sample_rate = metadata["sample_rate"]
|
||||
output_kwargs = {"format": "f32le", "ar": sample_rate}
|
||||
if duration is not None:
|
||||
output_kwargs['t'] = _to_ffmpeg_time(duration)
|
||||
output_kwargs["t"] = str(dt.timedelta(seconds=duration))
|
||||
if offset is not None:
|
||||
output_kwargs['ss'] = _to_ffmpeg_time(offset)
|
||||
output_kwargs["ss"] = str(dt.timedelta(seconds=offset))
|
||||
process = (
|
||||
ffmpeg
|
||||
.input(path)
|
||||
.output('pipe:', **output_kwargs)
|
||||
.run_async(pipe_stdout=True, pipe_stderr=True))
|
||||
ffmpeg.input(path)
|
||||
.output("pipe:", **output_kwargs)
|
||||
.run_async(pipe_stdout=True, pipe_stderr=True)
|
||||
)
|
||||
buffer, _ = process.communicate()
|
||||
waveform = np.frombuffer(buffer, dtype='<f4').reshape(-1, n_channels)
|
||||
waveform = np.frombuffer(buffer, dtype="<f4").reshape(-1, n_channels)
|
||||
if not waveform.dtype == np.dtype(dtype):
|
||||
waveform = waveform.astype(dtype)
|
||||
return (waveform, sample_rate)
|
||||
|
||||
def save(
|
||||
self, path, data, sample_rate,
|
||||
codec=None, bitrate=None):
|
||||
""" Write waveform data to the file denoted by the given path
|
||||
using FFMPEG process.
|
||||
|
||||
:param path: Path of the audio file to save data in.
|
||||
:param data: Waveform data to write.
|
||||
:param sample_rate: Sample rate to write file in.
|
||||
:param codec: (Optional) Writing codec to use.
|
||||
:param bitrate: (Optional) Bitrate of the written audio file.
|
||||
:raise IOError: If any error occurs while using FFMPEG to write data.
|
||||
self,
|
||||
path: Union[Path, str],
|
||||
data: np.ndarray,
|
||||
sample_rate: float,
|
||||
codec: Codec = None,
|
||||
bitrate: str = None,
|
||||
) -> None:
|
||||
"""
|
||||
_check_ffmpeg_install()
|
||||
Write waveform data to the file denoted by the given path using
|
||||
FFMPEG process.
|
||||
|
||||
Parameters:
|
||||
path (Union[Path, str]):
|
||||
Path like of the audio file to save data in.
|
||||
data (numpy.ndarray):
|
||||
Waveform data to write.
|
||||
sample_rate (float):
|
||||
Sample rate to write file in.
|
||||
codec ():
|
||||
(Optional) Writing codec to use, default to `None`.
|
||||
bitrate (str):
|
||||
(Optional) Bitrate of the written audio file, default to
|
||||
`None`.
|
||||
|
||||
Raises:
|
||||
IOError:
|
||||
If any error occurs while using FFMPEG to write data.
|
||||
"""
|
||||
if isinstance(path, Path):
|
||||
path = str(path)
|
||||
directory = os.path.dirname(path)
|
||||
if not os.path.exists(directory):
|
||||
raise SpleeterError(f'output directory does not exists: {directory}')
|
||||
get_logger().debug('Writing file %s', path)
|
||||
input_kwargs = {'ar': sample_rate, 'ac': data.shape[1]}
|
||||
output_kwargs = {'ar': sample_rate, 'strict': '-2'}
|
||||
raise SpleeterError(f"output directory does not exists: {directory}")
|
||||
logger.debug(f"Writing file {path}")
|
||||
input_kwargs = {"ar": sample_rate, "ac": data.shape[1]}
|
||||
output_kwargs = {"ar": sample_rate, "strict": "-2"}
|
||||
if bitrate:
|
||||
output_kwargs['audio_bitrate'] = bitrate
|
||||
if codec is not None and codec != 'wav':
|
||||
output_kwargs['codec'] = _to_ffmpeg_codec(codec)
|
||||
output_kwargs["audio_bitrate"] = bitrate
|
||||
if codec is not None and codec != "wav":
|
||||
output_kwargs["codec"] = self.SUPPORTED_CODECS.get(codec, codec)
|
||||
process = (
|
||||
ffmpeg
|
||||
.input('pipe:', format='f32le', **input_kwargs)
|
||||
ffmpeg.input("pipe:", format="f32le", **input_kwargs)
|
||||
.output(path, **output_kwargs)
|
||||
.overwrite_output()
|
||||
.run_async(pipe_stdin=True, pipe_stderr=True, quiet=True))
|
||||
.run_async(pipe_stdin=True, pipe_stderr=True, quiet=True)
|
||||
)
|
||||
try:
|
||||
process.stdin.write(data.astype('<f4').tobytes())
|
||||
process.stdin.write(data.astype("<f4").tobytes())
|
||||
process.stdin.close()
|
||||
process.wait()
|
||||
except IOError:
|
||||
raise SpleeterError(f'FFMPEG error: {process.stderr.read()}')
|
||||
get_logger().info('File %s written succesfully', path)
|
||||
raise SpleeterError(f"FFMPEG error: {process.stderr.read()}")
|
||||
logger.info(f"File {path} written succesfully")
|
||||
|
||||
@@ -1,128 +1,176 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
""" Spectrogram specific data augmentation """
|
||||
""" Spectrogram specific data augmentation. """
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from tensorflow.signal import hann_window, stft
|
||||
|
||||
from tensorflow.signal import stft, hann_window
|
||||
# pylint: enable=import-error
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
def compute_spectrogram_tf(
|
||||
waveform,
|
||||
frame_length=2048, frame_step=512,
|
||||
spec_exponent=1., window_exponent=1.):
|
||||
""" Compute magnitude / power spectrogram from waveform as
|
||||
a n_samples x n_channels tensor.
|
||||
|
||||
:param waveform: Input waveform as (times x number of channels)
|
||||
tensor.
|
||||
:param frame_length: Length of a STFT frame to use.
|
||||
:param frame_step: HOP between successive frames.
|
||||
:param spec_exponent: Exponent of the spectrogram (usually 1 for
|
||||
magnitude spectrogram, or 2 for power spectrogram).
|
||||
:param window_exponent: Exponent applied to the Hann windowing function
|
||||
(may be useful for making perfect STFT/iSTFT
|
||||
reconstruction).
|
||||
:returns: Computed magnitude / power spectrogram as a
|
||||
(T x F x n_channels) tensor.
|
||||
waveform: tf.Tensor,
|
||||
frame_length: int = 2048,
|
||||
frame_step: int = 512,
|
||||
spec_exponent: float = 1.0,
|
||||
window_exponent: float = 1.0,
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
stft_tensor = tf.transpose(
|
||||
Compute magnitude / power spectrogram from waveform as a
|
||||
`n_samples x n_channels` tensor.
|
||||
|
||||
Parameters:
|
||||
waveform (tensorflow.Tensor):
|
||||
Input waveform as `(times x number of channels)` tensor.
|
||||
frame_length (int):
|
||||
Length of a STFT frame to use.
|
||||
frame_step (int):
|
||||
HOP between successive frames.
|
||||
spec_exponent (float):
|
||||
Exponent of the spectrogram (usually 1 for magnitude
|
||||
spectrogram, or 2 for power spectrogram).
|
||||
window_exponent (float):
|
||||
Exponent applied to the Hann windowing function (may be
|
||||
useful for making perfect STFT/iSTFT reconstruction).
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Computed magnitude / power spectrogram as a
|
||||
`(T x F x n_channels)` tensor.
|
||||
"""
|
||||
stft_tensor: tf.Tensor = tf.transpose(
|
||||
stft(
|
||||
tf.transpose(waveform),
|
||||
frame_length,
|
||||
frame_step,
|
||||
window_fn=lambda f, dtype: hann_window(
|
||||
f,
|
||||
periodic=True,
|
||||
dtype=waveform.dtype) ** window_exponent),
|
||||
perm=[1, 2, 0])
|
||||
f, periodic=True, dtype=waveform.dtype
|
||||
)
|
||||
** window_exponent,
|
||||
),
|
||||
perm=[1, 2, 0],
|
||||
)
|
||||
return tf.abs(stft_tensor) ** spec_exponent
|
||||
|
||||
|
||||
def time_stretch(
|
||||
spectrogram,
|
||||
factor=1.0,
|
||||
method=tf.image.ResizeMethod.BILINEAR):
|
||||
""" Time stretch a spectrogram preserving shape in tensorflow. Note that
|
||||
spectrogram: tf.Tensor,
|
||||
factor: float = 1.0,
|
||||
method: tf.image.ResizeMethod = tf.image.ResizeMethod.BILINEAR,
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
Time stretch a spectrogram preserving shape in tensorflow. Note that
|
||||
this is an approximation in the frequency domain.
|
||||
|
||||
:param spectrogram: Input spectrogram to be time stretched as tensor.
|
||||
:param factor: (Optional) Time stretch factor, must be >0, default to 1.
|
||||
:param mehtod: (Optional) Interpolation method, default to BILINEAR.
|
||||
:returns: Time stretched spectrogram as tensor with same shape.
|
||||
Parameters:
|
||||
spectrogram (tensorflow.Tensor):
|
||||
Input spectrogram to be time stretched as tensor.
|
||||
factor (float):
|
||||
(Optional) Time stretch factor, must be > 0, default to `1`.
|
||||
method (tensorflow.image.ResizeMethod):
|
||||
(Optional) Interpolation method, default to `BILINEAR`.
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Time stretched spectrogram as tensor with same shape.
|
||||
"""
|
||||
T = tf.shape(spectrogram)[0]
|
||||
T_ts = tf.cast(tf.cast(T, tf.float32) * factor, tf.int32)[0]
|
||||
F = tf.shape(spectrogram)[1]
|
||||
ts_spec = tf.image.resize_images(
|
||||
spectrogram,
|
||||
[T_ts, F],
|
||||
method=method,
|
||||
align_corners=True)
|
||||
spectrogram, [T_ts, F], method=method, align_corners=True
|
||||
)
|
||||
return tf.image.resize_image_with_crop_or_pad(ts_spec, T, F)
|
||||
|
||||
|
||||
def random_time_stretch(spectrogram, factor_min=0.9, factor_max=1.1, **kwargs):
|
||||
""" Time stretch a spectrogram preserving shape with random ratio in
|
||||
tensorflow. Applies time_stretch to spectrogram with a random ratio drawn
|
||||
uniformly in [factor_min, factor_max].
|
||||
|
||||
:param spectrogram: Input spectrogram to be time stretched as tensor.
|
||||
:param factor_min: (Optional) Min time stretch factor, default to 0.9.
|
||||
:param factor_max: (Optional) Max time stretch factor, default to 1.1.
|
||||
:returns: Randomly time stretched spectrogram as tensor with same shape.
|
||||
def random_time_stretch(
|
||||
spectrogram: tf.Tensor, factor_min: float = 0.9, factor_max: float = 1.1, **kwargs
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
factor = tf.random_uniform(
|
||||
shape=(1,),
|
||||
seed=0) * (factor_max - factor_min) + factor_min
|
||||
Time stretch a spectrogram preserving shape with random ratio in
|
||||
tensorflow. Applies time_stretch to spectrogram with a random ratio
|
||||
drawn uniformly in `[factor_min, factor_max]`.
|
||||
|
||||
Parameters:
|
||||
spectrogram (tensorflow.Tensor):
|
||||
Input spectrogram to be time stretched as tensor.
|
||||
factor_min (float):
|
||||
(Optional) Min time stretch factor, default to `0.9`.
|
||||
factor_max (float):
|
||||
(Optional) Max time stretch factor, default to `1.1`.
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Randomly time stretched spectrogram as tensor with same shape.
|
||||
"""
|
||||
factor = (
|
||||
tf.random_uniform(shape=(1,), seed=0) * (factor_max - factor_min) + factor_min
|
||||
)
|
||||
return time_stretch(spectrogram, factor=factor, **kwargs)
|
||||
|
||||
|
||||
def pitch_shift(
|
||||
spectrogram,
|
||||
semitone_shift=0.0,
|
||||
method=tf.image.ResizeMethod.BILINEAR):
|
||||
""" Pitch shift a spectrogram preserving shape in tensorflow. Note that
|
||||
spectrogram: tf.Tensor,
|
||||
semitone_shift: float = 0.0,
|
||||
method: tf.image.ResizeMethod = tf.image.ResizeMethod.BILINEAR,
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
Pitch shift a spectrogram preserving shape in tensorflow. Note that
|
||||
this is an approximation in the frequency domain.
|
||||
|
||||
:param spectrogram: Input spectrogram to be pitch shifted as tensor.
|
||||
:param semitone_shift: (Optional) Pitch shift in semitone, default to 0.0.
|
||||
:param mehtod: (Optional) Interpolation method, default to BILINEAR.
|
||||
:returns: Pitch shifted spectrogram (same shape as spectrogram).
|
||||
Parameters:
|
||||
spectrogram (tensorflow.Tensor):
|
||||
Input spectrogram to be pitch shifted as tensor.
|
||||
semitone_shift (float):
|
||||
(Optional) Pitch shift in semitone, default to `0.0`.
|
||||
method (tensorflow.image.ResizeMethod):
|
||||
(Optional) Interpolation method, default to `BILINEAR`.
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Pitch shifted spectrogram (same shape as spectrogram).
|
||||
"""
|
||||
factor = 2 ** (semitone_shift / 12.)
|
||||
factor = 2 ** (semitone_shift / 12.0)
|
||||
T = tf.shape(spectrogram)[0]
|
||||
F = tf.shape(spectrogram)[1]
|
||||
F_ps = tf.cast(tf.cast(F, tf.float32) * factor, tf.int32)[0]
|
||||
ps_spec = tf.image.resize_images(
|
||||
spectrogram,
|
||||
[T, F_ps],
|
||||
method=method,
|
||||
align_corners=True)
|
||||
spectrogram, [T, F_ps], method=method, align_corners=True
|
||||
)
|
||||
paddings = [[0, 0], [0, tf.maximum(0, F - F_ps)], [0, 0]]
|
||||
return tf.pad(ps_spec[:, :F, :], paddings, 'CONSTANT')
|
||||
return tf.pad(ps_spec[:, :F, :], paddings, "CONSTANT")
|
||||
|
||||
|
||||
def random_pitch_shift(spectrogram, shift_min=-1., shift_max=1., **kwargs):
|
||||
""" Pitch shift a spectrogram preserving shape with random ratio in
|
||||
tensorflow. Applies pitch_shift to spectrogram with a random shift
|
||||
amount (expressed in semitones) drawn uniformly in [shift_min, shift_max].
|
||||
|
||||
:param spectrogram: Input spectrogram to be pitch shifted as tensor.
|
||||
|
||||
:param shift_min: (Optional) Min pitch shift in semitone, default to -1.
|
||||
:param shift_max: (Optional) Max pitch shift in semitone, default to 1.
|
||||
:returns: Randomly pitch shifted spectrogram (same shape as spectrogram).
|
||||
def random_pitch_shift(
|
||||
spectrogram: tf.Tensor, shift_min: float = -1.0, shift_max: float = 1.0, **kwargs
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
semitone_shift = tf.random_uniform(
|
||||
shape=(1,),
|
||||
seed=0) * (shift_max - shift_min) + shift_min
|
||||
Pitch shift a spectrogram preserving shape with random ratio in
|
||||
tensorflow. Applies pitch_shift to spectrogram with a random shift
|
||||
amount (expressed in semitones) drawn uniformly in
|
||||
`[shift_min, shift_max]`.
|
||||
|
||||
Parameters:
|
||||
spectrogram (tensorflow.Tensor):
|
||||
Input spectrogram to be pitch shifted as tensor.
|
||||
shift_min (float):
|
||||
(Optional) Min pitch shift in semitone, default to -1.
|
||||
shift_max (float):
|
||||
(Optional) Max pitch shift in semitone, default to 1.
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Randomly pitch shifted spectrogram (same shape as spectrogram).
|
||||
"""
|
||||
semitone_shift = (
|
||||
tf.random_uniform(shape=(1,), seed=0) * (shift_max - shift_min) + shift_min
|
||||
)
|
||||
return pitch_shift(spectrogram, semitone_shift=semitone_shift, **kwargs)
|
||||
|
||||
@@ -1,209 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
""" This modules provides spleeter command as well as CLI parsing methods. """
|
||||
|
||||
import json
|
||||
import logging
|
||||
from argparse import ArgumentParser
|
||||
from tempfile import gettempdir
|
||||
from os.path import exists, join
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
|
||||
|
||||
|
||||
# -i opt specification (separate).
|
||||
OPT_INPUT = {
|
||||
'dest': 'inputs',
|
||||
'nargs': '+',
|
||||
'help': 'List of input audio filenames',
|
||||
'required': True
|
||||
}
|
||||
|
||||
# -o opt specification (evaluate and separate).
|
||||
OPT_OUTPUT = {
|
||||
'dest': 'output_path',
|
||||
'default': join(gettempdir(), 'separated_audio'),
|
||||
'help': 'Path of the output directory to write audio files in'
|
||||
}
|
||||
|
||||
# -f opt specification (separate).
|
||||
OPT_FORMAT = {
|
||||
'dest': 'filename_format',
|
||||
'default': '{filename}/{instrument}.{codec}',
|
||||
'help': (
|
||||
'Template string that will be formatted to generated'
|
||||
'output filename. Such template should be Python formattable'
|
||||
'string, and could use {filename}, {instrument}, and {codec}'
|
||||
'variables.'
|
||||
)
|
||||
}
|
||||
|
||||
# -p opt specification (train, evaluate and separate).
|
||||
OPT_PARAMS = {
|
||||
'dest': 'configuration',
|
||||
'default': 'spleeter:2stems',
|
||||
'type': str,
|
||||
'action': 'store',
|
||||
'help': 'JSON filename that contains params'
|
||||
}
|
||||
|
||||
# -s opt specification (separate).
|
||||
OPT_OFFSET = {
|
||||
'dest': 'offset',
|
||||
'type': float,
|
||||
'default': 0.,
|
||||
'help': 'Set the starting offset to separate audio from.'
|
||||
}
|
||||
|
||||
# -d opt specification (separate).
|
||||
OPT_DURATION = {
|
||||
'dest': 'duration',
|
||||
'type': float,
|
||||
'default': 600.,
|
||||
'help': (
|
||||
'Set a maximum duration for processing audio '
|
||||
'(only separate offset + duration first seconds of '
|
||||
'the input file)')
|
||||
}
|
||||
|
||||
# -w opt specification (separate)
|
||||
OPT_STFT_BACKEND = {
|
||||
'dest': 'stft_backend',
|
||||
'type': str,
|
||||
'choices' : ["tensorflow", "librosa", "auto"],
|
||||
'default': "auto",
|
||||
'help': 'Who should be in charge of computing the stfts. Librosa is faster than tensorflow on CPU and uses'
|
||||
' less memory. "auto" will use tensorflow when GPU acceleration is available and librosa when not.'
|
||||
}
|
||||
|
||||
|
||||
# -c opt specification (separate).
|
||||
OPT_CODEC = {
|
||||
'dest': 'codec',
|
||||
'choices': ('wav', 'mp3', 'ogg', 'm4a', 'wma', 'flac'),
|
||||
'default': 'wav',
|
||||
'help': 'Audio codec to be used for the separated output'
|
||||
}
|
||||
|
||||
# -b opt specification (separate).
|
||||
OPT_BITRATE = {
|
||||
'dest': 'bitrate',
|
||||
'default': '128k',
|
||||
'help': 'Audio bitrate to be used for the separated output'
|
||||
}
|
||||
|
||||
# -m opt specification (evaluate and separate).
|
||||
OPT_MWF = {
|
||||
'dest': 'MWF',
|
||||
'action': 'store_const',
|
||||
'const': True,
|
||||
'default': False,
|
||||
'help': 'Whether to use multichannel Wiener filtering for separation',
|
||||
}
|
||||
|
||||
# --mus_dir opt specification (evaluate).
|
||||
OPT_MUSDB = {
|
||||
'dest': 'mus_dir',
|
||||
'type': str,
|
||||
'required': True,
|
||||
'help': 'Path to folder with musDB'
|
||||
}
|
||||
|
||||
# -d opt specification (train).
|
||||
OPT_DATA = {
|
||||
'dest': 'audio_path',
|
||||
'type': str,
|
||||
'required': True,
|
||||
'help': 'Path of the folder containing audio data for training'
|
||||
}
|
||||
|
||||
# -a opt specification (train, evaluate and separate).
|
||||
OPT_ADAPTER = {
|
||||
'dest': 'audio_adapter',
|
||||
'type': str,
|
||||
'help': 'Name of the audio adapter to use for audio I/O'
|
||||
}
|
||||
|
||||
# -a opt specification (train, evaluate and separate).
|
||||
OPT_VERBOSE = {
|
||||
'action': 'store_true',
|
||||
'help': 'Shows verbose logs'
|
||||
}
|
||||
|
||||
|
||||
def _add_common_options(parser):
|
||||
""" Add common option to the given parser.
|
||||
|
||||
:param parser: Parser to add common opt to.
|
||||
"""
|
||||
parser.add_argument('-a', '--adapter', **OPT_ADAPTER)
|
||||
parser.add_argument('-p', '--params_filename', **OPT_PARAMS)
|
||||
parser.add_argument('--verbose', **OPT_VERBOSE)
|
||||
|
||||
|
||||
def _create_train_parser(parser_factory):
|
||||
""" Creates an argparser for training command
|
||||
|
||||
:param parser_factory: Factory to use to create parser instance.
|
||||
:returns: Created and configured parser.
|
||||
"""
|
||||
parser = parser_factory('train', help='Train a source separation model')
|
||||
_add_common_options(parser)
|
||||
parser.add_argument('-d', '--data', **OPT_DATA)
|
||||
return parser
|
||||
|
||||
|
||||
def _create_evaluate_parser(parser_factory):
|
||||
""" Creates an argparser for evaluation command
|
||||
|
||||
:param parser_factory: Factory to use to create parser instance.
|
||||
:returns: Created and configured parser.
|
||||
"""
|
||||
parser = parser_factory(
|
||||
'evaluate',
|
||||
help='Evaluate a model on the musDB test dataset')
|
||||
_add_common_options(parser)
|
||||
parser.add_argument('-o', '--output_path', **OPT_OUTPUT)
|
||||
parser.add_argument('--mus_dir', **OPT_MUSDB)
|
||||
parser.add_argument('-m', '--mwf', **OPT_MWF)
|
||||
parser.add_argument('-B', '--stft-backend', **OPT_STFT_BACKEND)
|
||||
return parser
|
||||
|
||||
|
||||
def _create_separate_parser(parser_factory):
|
||||
""" Creates an argparser for separation command
|
||||
|
||||
:param parser_factory: Factory to use to create parser instance.
|
||||
:returns: Created and configured parser.
|
||||
"""
|
||||
parser = parser_factory('separate', help='Separate audio files')
|
||||
_add_common_options(parser)
|
||||
parser.add_argument('-i', '--inputs', **OPT_INPUT)
|
||||
parser.add_argument('-o', '--output_path', **OPT_OUTPUT)
|
||||
parser.add_argument('-f', '--filename_format', **OPT_FORMAT)
|
||||
parser.add_argument('-d', '--duration', **OPT_DURATION)
|
||||
parser.add_argument('-s', '--offset', **OPT_OFFSET)
|
||||
parser.add_argument('-c', '--codec', **OPT_CODEC)
|
||||
parser.add_argument('-b', '--birate', **OPT_BITRATE)
|
||||
parser.add_argument('-m', '--mwf', **OPT_MWF)
|
||||
parser.add_argument('-B', '--stft-backend', **OPT_STFT_BACKEND)
|
||||
return parser
|
||||
|
||||
|
||||
def create_argument_parser():
|
||||
""" Creates overall command line parser for Spleeter.
|
||||
|
||||
:returns: Created argument parser.
|
||||
"""
|
||||
parser = ArgumentParser(prog='spleeter')
|
||||
subparsers = parser.add_subparsers()
|
||||
subparsers.dest = 'command'
|
||||
subparsers.required = True
|
||||
_create_separate_parser(subparsers.add_parser)
|
||||
_create_train_parser(subparsers.add_parser)
|
||||
_create_evaluate_parser(subparsers.add_parser)
|
||||
return parser
|
||||
@@ -1,167 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
"""
|
||||
Entrypoint provider for performing model evaluation.
|
||||
|
||||
Evaluation is performed against musDB dataset.
|
||||
|
||||
USAGE: python -m spleeter evaluate \
|
||||
-p /path/to/params \
|
||||
-o /path/to/output/dir \
|
||||
[-m] \
|
||||
--mus_dir /path/to/musdb dataset
|
||||
"""
|
||||
|
||||
import sys
|
||||
import json
|
||||
|
||||
from argparse import Namespace
|
||||
from itertools import product
|
||||
from glob import glob
|
||||
from os.path import join, exists
|
||||
|
||||
# pylint: disable=import-error
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# pylint: enable=import-error
|
||||
|
||||
from .separate import entrypoint as separate_entrypoint
|
||||
from ..utils.logging import get_logger
|
||||
|
||||
try:
|
||||
import musdb
|
||||
import museval
|
||||
except ImportError:
|
||||
logger = get_logger()
|
||||
logger.error('Extra dependencies musdb and museval not found')
|
||||
logger.error('Please install musdb and museval first, abort')
|
||||
sys.exit(1)
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
|
||||
_SPLIT = 'test'
|
||||
_MIXTURE = 'mixture.wav'
|
||||
_AUDIO_DIRECTORY = 'audio'
|
||||
_METRICS_DIRECTORY = 'metrics'
|
||||
_INSTRUMENTS = ('vocals', 'drums', 'bass', 'other')
|
||||
_METRICS = ('SDR', 'SAR', 'SIR', 'ISR')
|
||||
|
||||
|
||||
def _separate_evaluation_dataset(arguments, musdb_root_directory, params):
|
||||
""" Performs audio separation on the musdb dataset from
|
||||
the given directory and params.
|
||||
|
||||
:param arguments: Entrypoint arguments.
|
||||
:param musdb_root_directory: Directory to retrieve dataset from.
|
||||
:param params: Spleeter configuration to apply to separation.
|
||||
:returns: Separation output directory path.
|
||||
"""
|
||||
songs = glob(join(musdb_root_directory, _SPLIT, '*/'))
|
||||
mixtures = [join(song, _MIXTURE) for song in songs]
|
||||
audio_output_directory = join(
|
||||
arguments.output_path,
|
||||
_AUDIO_DIRECTORY)
|
||||
separate_entrypoint(
|
||||
Namespace(
|
||||
audio_adapter=arguments.audio_adapter,
|
||||
configuration=arguments.configuration,
|
||||
inputs=mixtures,
|
||||
output_path=join(audio_output_directory, _SPLIT),
|
||||
filename_format='{foldername}/{instrument}.{codec}',
|
||||
codec='wav',
|
||||
duration=600.,
|
||||
offset=0.,
|
||||
bitrate='128k',
|
||||
MWF=arguments.MWF,
|
||||
verbose=arguments.verbose,
|
||||
stft_backend=arguments.stft_backend),
|
||||
params)
|
||||
return audio_output_directory
|
||||
|
||||
|
||||
def _compute_musdb_metrics(
|
||||
arguments,
|
||||
musdb_root_directory,
|
||||
audio_output_directory):
|
||||
""" Generates musdb metrics fro previsouly computed audio estimation.
|
||||
|
||||
:param arguments: Entrypoint arguments.
|
||||
:param audio_output_directory: Directory to get audio estimation from.
|
||||
:returns: Path of generated metrics directory.
|
||||
"""
|
||||
metrics_output_directory = join(
|
||||
arguments.output_path,
|
||||
_METRICS_DIRECTORY)
|
||||
get_logger().info('Starting musdb evaluation (this could be long) ...')
|
||||
dataset = musdb.DB(
|
||||
root=musdb_root_directory,
|
||||
is_wav=True,
|
||||
subsets=[_SPLIT])
|
||||
museval.eval_mus_dir(
|
||||
dataset=dataset,
|
||||
estimates_dir=audio_output_directory,
|
||||
output_dir=metrics_output_directory)
|
||||
get_logger().info('musdb evaluation done')
|
||||
return metrics_output_directory
|
||||
|
||||
|
||||
def _compile_metrics(metrics_output_directory):
|
||||
""" Compiles metrics from given directory and returns
|
||||
results as dict.
|
||||
|
||||
:param metrics_output_directory: Directory to get metrics from.
|
||||
:returns: Compiled metrics as dict.
|
||||
"""
|
||||
songs = glob(join(metrics_output_directory, 'test/*.json'))
|
||||
index = pd.MultiIndex.from_tuples(
|
||||
product(_INSTRUMENTS, _METRICS),
|
||||
names=['instrument', 'metric'])
|
||||
pd.DataFrame([], index=['config1', 'config2'], columns=index)
|
||||
metrics = {
|
||||
instrument: {k: [] for k in _METRICS}
|
||||
for instrument in _INSTRUMENTS}
|
||||
for song in songs:
|
||||
with open(song, 'r') as stream:
|
||||
data = json.load(stream)
|
||||
for target in data['targets']:
|
||||
instrument = target['name']
|
||||
for metric in _METRICS:
|
||||
sdr_med = np.median([
|
||||
frame['metrics'][metric]
|
||||
for frame in target['frames']
|
||||
if not np.isnan(frame['metrics'][metric])])
|
||||
metrics[instrument][metric].append(sdr_med)
|
||||
return metrics
|
||||
|
||||
|
||||
def entrypoint(arguments, params):
|
||||
""" Command entrypoint.
|
||||
|
||||
:param arguments: Command line parsed argument as argparse.Namespace.
|
||||
:param params: Deserialized JSON configuration file provided in CLI args.
|
||||
"""
|
||||
# Parse and check musdb directory.
|
||||
musdb_root_directory = arguments.mus_dir
|
||||
if not exists(musdb_root_directory):
|
||||
raise IOError(f'musdb directory {musdb_root_directory} not found')
|
||||
# Separate musdb sources.
|
||||
audio_output_directory = _separate_evaluation_dataset(
|
||||
arguments,
|
||||
musdb_root_directory,
|
||||
params)
|
||||
# Compute metrics with musdb.
|
||||
metrics_output_directory = _compute_musdb_metrics(
|
||||
arguments,
|
||||
musdb_root_directory,
|
||||
audio_output_directory)
|
||||
# Compute and pretty print median metrics.
|
||||
metrics = _compile_metrics(metrics_output_directory)
|
||||
for instrument, metric in metrics.items():
|
||||
get_logger().info('%s:', instrument)
|
||||
for metric, value in metric.items():
|
||||
get_logger().info('%s: %s', metric, f'{np.median(value):.3f}')
|
||||
|
||||
return metrics
|
||||
@@ -1,47 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
"""
|
||||
Entrypoint provider for performing source separation.
|
||||
|
||||
USAGE: python -m spleeter separate \
|
||||
-p /path/to/params \
|
||||
-i inputfile1 inputfile2 ... inputfilen
|
||||
-o /path/to/output/dir \
|
||||
-i /path/to/audio1.wav /path/to/audio2.mp3
|
||||
"""
|
||||
|
||||
from ..audio.adapter import get_audio_adapter
|
||||
from ..separator import Separator
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
|
||||
|
||||
|
||||
def entrypoint(arguments, params):
|
||||
""" Command entrypoint.
|
||||
|
||||
:param arguments: Command line parsed argument as argparse.Namespace.
|
||||
:param params: Deserialized JSON configuration file provided in CLI args.
|
||||
"""
|
||||
# TODO: check with output naming.
|
||||
audio_adapter = get_audio_adapter(arguments.audio_adapter)
|
||||
separator = Separator(
|
||||
arguments.configuration,
|
||||
MWF=arguments.MWF,
|
||||
stft_backend=arguments.stft_backend)
|
||||
for filename in arguments.inputs:
|
||||
separator.separate_to_file(
|
||||
filename,
|
||||
arguments.output_path,
|
||||
audio_adapter=audio_adapter,
|
||||
offset=arguments.offset,
|
||||
duration=arguments.duration,
|
||||
codec=arguments.codec,
|
||||
bitrate=arguments.bitrate,
|
||||
filename_format=arguments.filename_format,
|
||||
synchronous=False
|
||||
)
|
||||
separator.join()
|
||||
@@ -1,100 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
"""
|
||||
Entrypoint provider for performing model training.
|
||||
|
||||
USAGE: python -m spleeter train -p /path/to/params
|
||||
"""
|
||||
|
||||
from functools import partial
|
||||
|
||||
# pylint: disable=import-error
|
||||
import tensorflow as tf
|
||||
# pylint: enable=import-error
|
||||
|
||||
from ..audio.adapter import get_audio_adapter
|
||||
from ..dataset import get_training_dataset, get_validation_dataset
|
||||
from ..model import model_fn
|
||||
from ..model.provider import ModelProvider
|
||||
from ..utils.logging import get_logger
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
|
||||
|
||||
def _create_estimator(params):
|
||||
""" Creates estimator.
|
||||
|
||||
:param params: TF params to build estimator from.
|
||||
:returns: Built estimator.
|
||||
"""
|
||||
session_config = tf.compat.v1.ConfigProto()
|
||||
session_config.gpu_options.per_process_gpu_memory_fraction = 0.45
|
||||
estimator = tf.estimator.Estimator(
|
||||
model_fn=model_fn,
|
||||
model_dir=params['model_dir'],
|
||||
params=params,
|
||||
config=tf.estimator.RunConfig(
|
||||
save_checkpoints_steps=params['save_checkpoints_steps'],
|
||||
tf_random_seed=params['random_seed'],
|
||||
save_summary_steps=params['save_summary_steps'],
|
||||
session_config=session_config,
|
||||
log_step_count_steps=10,
|
||||
keep_checkpoint_max=2))
|
||||
return estimator
|
||||
|
||||
|
||||
def _create_train_spec(params, audio_adapter, audio_path):
|
||||
""" Creates train spec.
|
||||
|
||||
:param params: TF params to build spec from.
|
||||
:returns: Built train spec.
|
||||
"""
|
||||
input_fn = partial(get_training_dataset, params, audio_adapter, audio_path)
|
||||
train_spec = tf.estimator.TrainSpec(
|
||||
input_fn=input_fn,
|
||||
max_steps=params['train_max_steps'])
|
||||
return train_spec
|
||||
|
||||
|
||||
def _create_evaluation_spec(params, audio_adapter, audio_path):
|
||||
""" Setup eval spec evaluating ever n seconds
|
||||
|
||||
:param params: TF params to build spec from.
|
||||
:returns: Built evaluation spec.
|
||||
"""
|
||||
input_fn = partial(
|
||||
get_validation_dataset,
|
||||
params,
|
||||
audio_adapter,
|
||||
audio_path)
|
||||
evaluation_spec = tf.estimator.EvalSpec(
|
||||
input_fn=input_fn,
|
||||
steps=None,
|
||||
throttle_secs=params['throttle_secs'])
|
||||
return evaluation_spec
|
||||
|
||||
|
||||
def entrypoint(arguments, params):
|
||||
""" Command entrypoint.
|
||||
|
||||
:param arguments: Command line parsed argument as argparse.Namespace.
|
||||
:param params: Deserialized JSON configuration file provided in CLI args.
|
||||
"""
|
||||
audio_adapter = get_audio_adapter(arguments.audio_adapter)
|
||||
audio_path = arguments.audio_path
|
||||
estimator = _create_estimator(params)
|
||||
train_spec = _create_train_spec(params, audio_adapter, audio_path)
|
||||
evaluation_spec = _create_evaluation_spec(
|
||||
params,
|
||||
audio_adapter,
|
||||
audio_path)
|
||||
get_logger().info('Start model training')
|
||||
tf.estimator.train_and_evaluate(
|
||||
estimator,
|
||||
train_spec,
|
||||
evaluation_spec)
|
||||
ModelProvider.writeProbe(params['model_dir'])
|
||||
get_logger().info('Model training done')
|
||||
@@ -14,87 +14,110 @@
|
||||
(ground truth)
|
||||
"""
|
||||
|
||||
import time
|
||||
import os
|
||||
from os.path import exists, join, sep as SEPARATOR
|
||||
import time
|
||||
from os.path import exists
|
||||
from os.path import sep as SEPARATOR
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
# pylint: enable=import-error
|
||||
|
||||
from .audio.convertor import (
|
||||
db_uint_spectrogram_to_gain,
|
||||
spectrogram_to_db_uint)
|
||||
from .audio.adapter import AudioAdapter
|
||||
from .audio.convertor import db_uint_spectrogram_to_gain, spectrogram_to_db_uint
|
||||
from .audio.spectrogram import (
|
||||
compute_spectrogram_tf,
|
||||
random_pitch_shift,
|
||||
random_time_stretch)
|
||||
from .utils.logging import get_logger
|
||||
random_time_stretch,
|
||||
)
|
||||
from .utils.logging import logger
|
||||
from .utils.tensor import (
|
||||
check_tensor_shape,
|
||||
dataset_from_csv,
|
||||
set_tensor_shape,
|
||||
sync_apply)
|
||||
sync_apply,
|
||||
)
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
# pylint: enable=import-error
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
# Default audio parameters to use.
|
||||
DEFAULT_AUDIO_PARAMS = {
|
||||
'instrument_list': ('vocals', 'accompaniment'),
|
||||
'mix_name': 'mix',
|
||||
'sample_rate': 44100,
|
||||
'frame_length': 4096,
|
||||
'frame_step': 1024,
|
||||
'T': 512,
|
||||
'F': 1024
|
||||
DEFAULT_AUDIO_PARAMS: Dict = {
|
||||
"instrument_list": ("vocals", "accompaniment"),
|
||||
"mix_name": "mix",
|
||||
"sample_rate": 44100,
|
||||
"frame_length": 4096,
|
||||
"frame_step": 1024,
|
||||
"T": 512,
|
||||
"F": 1024,
|
||||
}
|
||||
|
||||
|
||||
def get_training_dataset(audio_params, audio_adapter, audio_path):
|
||||
""" Builds training dataset.
|
||||
def get_training_dataset(
|
||||
audio_params: Dict, audio_adapter: AudioAdapter, audio_path: str
|
||||
) -> Any:
|
||||
"""
|
||||
Builds training dataset.
|
||||
|
||||
:param audio_params: Audio parameters.
|
||||
:param audio_adapter: Adapter to load audio from.
|
||||
:param audio_path: Path of directory containing audio.
|
||||
:returns: Built dataset.
|
||||
Parameters:
|
||||
audio_params (Dict):
|
||||
Audio parameters.
|
||||
audio_adapter (AudioAdapter):
|
||||
Adapter to load audio from.
|
||||
audio_path (str):
|
||||
Path of directory containing audio.
|
||||
|
||||
Returns:
|
||||
Any:
|
||||
Built dataset.
|
||||
"""
|
||||
builder = DatasetBuilder(
|
||||
audio_params,
|
||||
audio_adapter,
|
||||
audio_path,
|
||||
chunk_duration=audio_params.get('chunk_duration', 20.0),
|
||||
random_seed=audio_params.get('random_seed', 0))
|
||||
chunk_duration=audio_params.get("chunk_duration", 20.0),
|
||||
random_seed=audio_params.get("random_seed", 0),
|
||||
)
|
||||
return builder.build(
|
||||
audio_params.get('train_csv'),
|
||||
cache_directory=audio_params.get('training_cache'),
|
||||
batch_size=audio_params.get('batch_size'),
|
||||
n_chunks_per_song=audio_params.get('n_chunks_per_song', 2),
|
||||
audio_params.get("train_csv"),
|
||||
cache_directory=audio_params.get("training_cache"),
|
||||
batch_size=audio_params.get("batch_size"),
|
||||
n_chunks_per_song=audio_params.get("n_chunks_per_song", 2),
|
||||
random_data_augmentation=False,
|
||||
convert_to_uint=True,
|
||||
wait_for_cache=False)
|
||||
wait_for_cache=False,
|
||||
)
|
||||
|
||||
|
||||
def get_validation_dataset(audio_params, audio_adapter, audio_path):
|
||||
""" Builds validation dataset.
|
||||
def get_validation_dataset(
|
||||
audio_params: Dict, audio_adapter: AudioAdapter, audio_path: str
|
||||
) -> Any:
|
||||
"""
|
||||
Builds validation dataset.
|
||||
|
||||
:param audio_params: Audio parameters.
|
||||
:param audio_adapter: Adapter to load audio from.
|
||||
:param audio_path: Path of directory containing audio.
|
||||
:returns: Built dataset.
|
||||
Parameters:
|
||||
audio_params (Dict):
|
||||
Audio parameters.
|
||||
audio_adapter (AudioAdapter):
|
||||
Adapter to load audio from.
|
||||
audio_path (str):
|
||||
Path of directory containing audio.
|
||||
|
||||
Returns:
|
||||
Any:
|
||||
Built dataset.
|
||||
"""
|
||||
builder = DatasetBuilder(
|
||||
audio_params,
|
||||
audio_adapter,
|
||||
audio_path,
|
||||
chunk_duration=12.0)
|
||||
audio_params, audio_adapter, audio_path, chunk_duration=12.0
|
||||
)
|
||||
return builder.build(
|
||||
audio_params.get('validation_csv'),
|
||||
batch_size=audio_params.get('batch_size'),
|
||||
cache_directory=audio_params.get('validation_cache'),
|
||||
audio_params.get("validation_csv"),
|
||||
batch_size=audio_params.get("batch_size"),
|
||||
cache_directory=audio_params.get("validation_cache"),
|
||||
convert_to_uint=True,
|
||||
infinite_generator=False,
|
||||
n_chunks_per_song=1,
|
||||
@@ -108,127 +131,175 @@ def get_validation_dataset(audio_params, audio_adapter, audio_path):
|
||||
class InstrumentDatasetBuilder(object):
|
||||
""" Instrument based filter and mapper provider. """
|
||||
|
||||
def __init__(self, parent, instrument):
|
||||
""" Default constructor.
|
||||
def __init__(self, parent, instrument) -> None:
|
||||
"""
|
||||
Default constructor.
|
||||
|
||||
:param parent: Parent dataset builder.
|
||||
:param instrument: Target instrument.
|
||||
Parameters:
|
||||
parent:
|
||||
Parent dataset builder.
|
||||
instrument:
|
||||
Target instrument.
|
||||
"""
|
||||
self._parent = parent
|
||||
self._instrument = instrument
|
||||
self._spectrogram_key = f'{instrument}_spectrogram'
|
||||
self._min_spectrogram_key = f'min_{instrument}_spectrogram'
|
||||
self._max_spectrogram_key = f'max_{instrument}_spectrogram'
|
||||
self._spectrogram_key = f"{instrument}_spectrogram"
|
||||
self._min_spectrogram_key = f"min_{instrument}_spectrogram"
|
||||
self._max_spectrogram_key = f"max_{instrument}_spectrogram"
|
||||
|
||||
def load_waveform(self, sample):
|
||||
""" Load waveform for given sample. """
|
||||
return dict(sample, **self._parent._audio_adapter.load_tf_waveform(
|
||||
sample[f'{self._instrument}_path'],
|
||||
offset=sample['start'],
|
||||
duration=self._parent._chunk_duration,
|
||||
sample_rate=self._parent._sample_rate,
|
||||
waveform_name='waveform'))
|
||||
return dict(
|
||||
sample,
|
||||
**self._parent._audio_adapter.load_tf_waveform(
|
||||
sample[f"{self._instrument}_path"],
|
||||
offset=sample["start"],
|
||||
duration=self._parent._chunk_duration,
|
||||
sample_rate=self._parent._sample_rate,
|
||||
waveform_name="waveform",
|
||||
),
|
||||
)
|
||||
|
||||
def compute_spectrogram(self, sample):
|
||||
""" Compute spectrogram of the given sample. """
|
||||
return dict(sample, **{
|
||||
self._spectrogram_key: compute_spectrogram_tf(
|
||||
sample['waveform'],
|
||||
frame_length=self._parent._frame_length,
|
||||
frame_step=self._parent._frame_step,
|
||||
spec_exponent=1.,
|
||||
window_exponent=1.)})
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
self._spectrogram_key: compute_spectrogram_tf(
|
||||
sample["waveform"],
|
||||
frame_length=self._parent._frame_length,
|
||||
frame_step=self._parent._frame_step,
|
||||
spec_exponent=1.0,
|
||||
window_exponent=1.0,
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
def filter_frequencies(self, sample):
|
||||
""" """
|
||||
return dict(sample, **{
|
||||
self._spectrogram_key:
|
||||
sample[self._spectrogram_key][:, :self._parent._F, :]})
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
self._spectrogram_key: sample[self._spectrogram_key][
|
||||
:, : self._parent._F, :
|
||||
]
|
||||
},
|
||||
)
|
||||
|
||||
def convert_to_uint(self, sample):
|
||||
""" Convert given sample from float to unit. """
|
||||
return dict(sample, **spectrogram_to_db_uint(
|
||||
sample[self._spectrogram_key],
|
||||
tensor_key=self._spectrogram_key,
|
||||
min_key=self._min_spectrogram_key,
|
||||
max_key=self._max_spectrogram_key))
|
||||
return dict(
|
||||
sample,
|
||||
**spectrogram_to_db_uint(
|
||||
sample[self._spectrogram_key],
|
||||
tensor_key=self._spectrogram_key,
|
||||
min_key=self._min_spectrogram_key,
|
||||
max_key=self._max_spectrogram_key,
|
||||
),
|
||||
)
|
||||
|
||||
def filter_infinity(self, sample):
|
||||
""" Filter infinity sample. """
|
||||
return tf.logical_not(
|
||||
tf.math.is_inf(
|
||||
sample[self._min_spectrogram_key]))
|
||||
return tf.logical_not(tf.math.is_inf(sample[self._min_spectrogram_key]))
|
||||
|
||||
def convert_to_float32(self, sample):
|
||||
""" Convert given sample from unit to float. """
|
||||
return dict(sample, **{
|
||||
self._spectrogram_key: db_uint_spectrogram_to_gain(
|
||||
sample[self._spectrogram_key],
|
||||
sample[self._min_spectrogram_key],
|
||||
sample[self._max_spectrogram_key])})
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
self._spectrogram_key: db_uint_spectrogram_to_gain(
|
||||
sample[self._spectrogram_key],
|
||||
sample[self._min_spectrogram_key],
|
||||
sample[self._max_spectrogram_key],
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
def time_crop(self, sample):
|
||||
""" """
|
||||
|
||||
def start(sample):
|
||||
""" mid_segment_start """
|
||||
return tf.cast(
|
||||
tf.maximum(
|
||||
tf.shape(sample[self._spectrogram_key])[0]
|
||||
/ 2 - self._parent._T / 2, 0),
|
||||
tf.int32)
|
||||
return dict(sample, **{
|
||||
self._spectrogram_key: sample[self._spectrogram_key][
|
||||
start(sample):start(sample) + self._parent._T, :, :]})
|
||||
tf.shape(sample[self._spectrogram_key])[0] / 2
|
||||
- self._parent._T / 2,
|
||||
0,
|
||||
),
|
||||
tf.int32,
|
||||
)
|
||||
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
self._spectrogram_key: sample[self._spectrogram_key][
|
||||
start(sample) : start(sample) + self._parent._T, :, :
|
||||
]
|
||||
},
|
||||
)
|
||||
|
||||
def filter_shape(self, sample):
|
||||
""" Filter badly shaped sample. """
|
||||
return check_tensor_shape(
|
||||
sample[self._spectrogram_key], (
|
||||
self._parent._T, self._parent._F, 2))
|
||||
sample[self._spectrogram_key], (self._parent._T, self._parent._F, 2)
|
||||
)
|
||||
|
||||
def reshape_spectrogram(self, sample):
|
||||
""" """
|
||||
return dict(sample, **{
|
||||
self._spectrogram_key: set_tensor_shape(
|
||||
sample[self._spectrogram_key],
|
||||
(self._parent._T, self._parent._F, 2))})
|
||||
""" Reshape given sample. """
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
self._spectrogram_key: set_tensor_shape(
|
||||
sample[self._spectrogram_key], (self._parent._T, self._parent._F, 2)
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
class DatasetBuilder(object):
|
||||
"""
|
||||
TO BE DOCUMENTED.
|
||||
"""
|
||||
|
||||
# Margin at beginning and end of songs in seconds.
|
||||
MARGIN = 0.5
|
||||
MARGIN: float = 0.5
|
||||
""" Margin at beginning and end of songs in seconds. """
|
||||
|
||||
# Wait period for cache (in seconds).
|
||||
WAIT_PERIOD = 60
|
||||
WAIT_PERIOD: int = 60
|
||||
""" Wait period for cache (in seconds). """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
audio_params, audio_adapter, audio_path,
|
||||
random_seed=0, chunk_duration=20.0):
|
||||
""" Default constructor.
|
||||
self,
|
||||
audio_params: Dict,
|
||||
audio_adapter: AudioAdapter,
|
||||
audio_path: str,
|
||||
random_seed: int = 0,
|
||||
chunk_duration: float = 20.0,
|
||||
) -> None:
|
||||
"""
|
||||
Default constructor.
|
||||
|
||||
NOTE: Probably need for AudioAdapter.
|
||||
|
||||
:param audio_params: Audio parameters to use.
|
||||
:param audio_adapter: Audio adapter to use.
|
||||
:param audio_path:
|
||||
:param random_seed:
|
||||
:param chunk_duration:
|
||||
Parameters:
|
||||
audio_params (Dict):
|
||||
Audio parameters to use.
|
||||
audio_adapter (AudioAdapter):
|
||||
Audio adapter to use.
|
||||
audio_path (str):
|
||||
random_seed (int):
|
||||
chunk_duration (float):
|
||||
"""
|
||||
# Length of segment in frames (if fs=22050 and
|
||||
# frame_step=512, then T=512 corresponds to 11.89s)
|
||||
self._T = audio_params['T']
|
||||
self._T = audio_params["T"]
|
||||
# Number of frequency bins to be used (should
|
||||
# be less than frame_length/2 + 1)
|
||||
self._F = audio_params['F']
|
||||
self._sample_rate = audio_params['sample_rate']
|
||||
self._frame_length = audio_params['frame_length']
|
||||
self._frame_step = audio_params['frame_step']
|
||||
self._mix_name = audio_params['mix_name']
|
||||
self._instruments = [self._mix_name] + audio_params['instrument_list']
|
||||
self._F = audio_params["F"]
|
||||
self._sample_rate = audio_params["sample_rate"]
|
||||
self._frame_length = audio_params["frame_length"]
|
||||
self._frame_step = audio_params["frame_step"]
|
||||
self._mix_name = audio_params["mix_name"]
|
||||
self._instruments = [self._mix_name] + audio_params["instrument_list"]
|
||||
self._instrument_builders = None
|
||||
self._chunk_duration = chunk_duration
|
||||
self._audio_adapter = audio_adapter
|
||||
@@ -238,130 +309,202 @@ class DatasetBuilder(object):
|
||||
|
||||
def expand_path(self, sample):
|
||||
""" Expands audio paths for the given sample. """
|
||||
return dict(sample, **{f'{instrument}_path': tf.strings.join(
|
||||
(self._audio_path, sample[f'{instrument}_path']), SEPARATOR)
|
||||
for instrument in self._instruments})
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
f"{instrument}_path": tf.strings.join(
|
||||
(self._audio_path, sample[f"{instrument}_path"]), SEPARATOR
|
||||
)
|
||||
for instrument in self._instruments
|
||||
},
|
||||
)
|
||||
|
||||
def filter_error(self, sample):
|
||||
""" Filter errored sample. """
|
||||
return tf.logical_not(sample['waveform_error'])
|
||||
return tf.logical_not(sample["waveform_error"])
|
||||
|
||||
def filter_waveform(self, sample):
|
||||
""" Filter waveform from sample. """
|
||||
return {k: v for k, v in sample.items() if not k == 'waveform'}
|
||||
return {k: v for k, v in sample.items() if not k == "waveform"}
|
||||
|
||||
def harmonize_spectrogram(self, sample):
|
||||
""" Ensure same size for vocals and mix spectrograms. """
|
||||
|
||||
def _reduce(sample):
|
||||
return tf.reduce_min([
|
||||
tf.shape(sample[f'{instrument}_spectrogram'])[0]
|
||||
for instrument in self._instruments])
|
||||
return dict(sample, **{
|
||||
f'{instrument}_spectrogram':
|
||||
sample[f'{instrument}_spectrogram'][:_reduce(sample), :, :]
|
||||
for instrument in self._instruments})
|
||||
return tf.reduce_min(
|
||||
[
|
||||
tf.shape(sample[f"{instrument}_spectrogram"])[0]
|
||||
for instrument in self._instruments
|
||||
]
|
||||
)
|
||||
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
f"{instrument}_spectrogram": sample[f"{instrument}_spectrogram"][
|
||||
: _reduce(sample), :, :
|
||||
]
|
||||
for instrument in self._instruments
|
||||
},
|
||||
)
|
||||
|
||||
def filter_short_segments(self, sample):
|
||||
""" Filter out too short segment. """
|
||||
return tf.reduce_any([
|
||||
tf.shape(sample[f'{instrument}_spectrogram'])[0] >= self._T
|
||||
for instrument in self._instruments])
|
||||
return tf.reduce_any(
|
||||
[
|
||||
tf.shape(sample[f"{instrument}_spectrogram"])[0] >= self._T
|
||||
for instrument in self._instruments
|
||||
]
|
||||
)
|
||||
|
||||
def random_time_crop(self, sample):
|
||||
""" Random time crop of 11.88s. """
|
||||
return dict(sample, **sync_apply({
|
||||
f'{instrument}_spectrogram': sample[f'{instrument}_spectrogram']
|
||||
for instrument in self._instruments},
|
||||
lambda x: tf.image.random_crop(
|
||||
x, (self._T, len(self._instruments) * self._F, 2),
|
||||
seed=self._random_seed)))
|
||||
return dict(
|
||||
sample,
|
||||
**sync_apply(
|
||||
{
|
||||
f"{instrument}_spectrogram": sample[f"{instrument}_spectrogram"]
|
||||
for instrument in self._instruments
|
||||
},
|
||||
lambda x: tf.image.random_crop(
|
||||
x,
|
||||
(self._T, len(self._instruments) * self._F, 2),
|
||||
seed=self._random_seed,
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
def random_time_stretch(self, sample):
|
||||
""" Randomly time stretch the given sample. """
|
||||
return dict(sample, **sync_apply({
|
||||
f'{instrument}_spectrogram':
|
||||
sample[f'{instrument}_spectrogram']
|
||||
for instrument in self._instruments},
|
||||
lambda x: random_time_stretch(
|
||||
x, factor_min=0.9, factor_max=1.1)))
|
||||
return dict(
|
||||
sample,
|
||||
**sync_apply(
|
||||
{
|
||||
f"{instrument}_spectrogram": sample[f"{instrument}_spectrogram"]
|
||||
for instrument in self._instruments
|
||||
},
|
||||
lambda x: random_time_stretch(x, factor_min=0.9, factor_max=1.1),
|
||||
),
|
||||
)
|
||||
|
||||
def random_pitch_shift(self, sample):
|
||||
""" Randomly pitch shift the given sample. """
|
||||
return dict(sample, **sync_apply({
|
||||
f'{instrument}_spectrogram':
|
||||
sample[f'{instrument}_spectrogram']
|
||||
for instrument in self._instruments},
|
||||
lambda x: random_pitch_shift(
|
||||
x, shift_min=-1.0, shift_max=1.0), concat_axis=0))
|
||||
return dict(
|
||||
sample,
|
||||
**sync_apply(
|
||||
{
|
||||
f"{instrument}_spectrogram": sample[f"{instrument}_spectrogram"]
|
||||
for instrument in self._instruments
|
||||
},
|
||||
lambda x: random_pitch_shift(x, shift_min=-1.0, shift_max=1.0),
|
||||
concat_axis=0,
|
||||
),
|
||||
)
|
||||
|
||||
def map_features(self, sample):
|
||||
""" Select features and annotation of the given sample. """
|
||||
input_ = {
|
||||
f'{self._mix_name}_spectrogram':
|
||||
sample[f'{self._mix_name}_spectrogram']}
|
||||
f"{self._mix_name}_spectrogram": sample[f"{self._mix_name}_spectrogram"]
|
||||
}
|
||||
output = {
|
||||
f'{instrument}_spectrogram': sample[f'{instrument}_spectrogram']
|
||||
for instrument in self._audio_params['instrument_list']}
|
||||
f"{instrument}_spectrogram": sample[f"{instrument}_spectrogram"]
|
||||
for instrument in self._audio_params["instrument_list"]
|
||||
}
|
||||
return (input_, output)
|
||||
|
||||
def compute_segments(self, dataset, n_chunks_per_song):
|
||||
""" Computes segments for each song of the dataset.
|
||||
def compute_segments(self, dataset: Any, n_chunks_per_song: int) -> Any:
|
||||
"""
|
||||
Computes segments for each song of the dataset.
|
||||
|
||||
:param dataset: Dataset to compute segments for.
|
||||
:param n_chunks_per_song: Number of segment per song to compute.
|
||||
:returns: Segmented dataset.
|
||||
Parameters:
|
||||
dataset (Any):
|
||||
Dataset to compute segments for.
|
||||
n_chunks_per_song (int):
|
||||
Number of segment per song to compute.
|
||||
|
||||
Returns:
|
||||
Any:
|
||||
Segmented dataset.
|
||||
"""
|
||||
if n_chunks_per_song <= 0:
|
||||
raise ValueError('n_chunks_per_song must be positif')
|
||||
raise ValueError("n_chunks_per_song must be positif")
|
||||
datasets = []
|
||||
for k in range(n_chunks_per_song):
|
||||
if n_chunks_per_song > 1:
|
||||
datasets.append(
|
||||
dataset.map(lambda sample: dict(sample, start=tf.maximum(
|
||||
k * (
|
||||
sample['duration'] - self._chunk_duration - 2
|
||||
* self.MARGIN) / (n_chunks_per_song - 1)
|
||||
+ self.MARGIN, 0))))
|
||||
dataset.map(
|
||||
lambda sample: dict(
|
||||
sample,
|
||||
start=tf.maximum(
|
||||
k
|
||||
* (
|
||||
sample["duration"]
|
||||
- self._chunk_duration
|
||||
- 2 * self.MARGIN
|
||||
)
|
||||
/ (n_chunks_per_song - 1)
|
||||
+ self.MARGIN,
|
||||
0,
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
elif n_chunks_per_song == 1: # Take central segment.
|
||||
datasets.append(
|
||||
dataset.map(lambda sample: dict(sample, start=tf.maximum(
|
||||
sample['duration'] / 2 - self._chunk_duration / 2,
|
||||
0))))
|
||||
dataset.map(
|
||||
lambda sample: dict(
|
||||
sample,
|
||||
start=tf.maximum(
|
||||
sample["duration"] / 2 - self._chunk_duration / 2, 0
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
dataset = datasets[-1]
|
||||
for d in datasets[:-1]:
|
||||
dataset = dataset.concatenate(d)
|
||||
return dataset
|
||||
|
||||
@property
|
||||
def instruments(self):
|
||||
""" Instrument dataset builder generator.
|
||||
def instruments(self) -> Any:
|
||||
"""
|
||||
Instrument dataset builder generator.
|
||||
|
||||
:yield InstrumentBuilder instance.
|
||||
Yields:
|
||||
Any:
|
||||
InstrumentBuilder instance.
|
||||
"""
|
||||
if self._instrument_builders is None:
|
||||
self._instrument_builders = []
|
||||
for instrument in self._instruments:
|
||||
self._instrument_builders.append(
|
||||
InstrumentDatasetBuilder(self, instrument))
|
||||
InstrumentDatasetBuilder(self, instrument)
|
||||
)
|
||||
for builder in self._instrument_builders:
|
||||
yield builder
|
||||
|
||||
def cache(self, dataset, cache, wait):
|
||||
""" Cache the given dataset if cache is enabled. Eventually waits for
|
||||
cache to be available (useful if another process is already computing
|
||||
cache) if provided wait flag is True.
|
||||
def cache(self, dataset: Any, cache: str, wait: bool) -> Any:
|
||||
"""
|
||||
Cache the given dataset if cache is enabled. Eventually waits for
|
||||
cache to be available (useful if another process is already
|
||||
computing cache) if provided wait flag is `True`.
|
||||
|
||||
:param dataset: Dataset to be cached if cache is required.
|
||||
:param cache: Path of cache directory to be used, None if no cache.
|
||||
:param wait: If caching is enabled, True is cache should be waited.
|
||||
:returns: Cached dataset if needed, original dataset otherwise.
|
||||
Parameters:
|
||||
dataset (Any):
|
||||
Dataset to be cached if cache is required.
|
||||
cache (str):
|
||||
Path of cache directory to be used, None if no cache.
|
||||
wait (bool):
|
||||
If caching is enabled, True is cache should be waited.
|
||||
|
||||
Returns:
|
||||
Any:
|
||||
Cached dataset if needed, original dataset otherwise.
|
||||
"""
|
||||
if cache is not None:
|
||||
if wait:
|
||||
while not exists(f'{cache}.index'):
|
||||
get_logger().info(
|
||||
'Cache not available, wait %s',
|
||||
self.WAIT_PERIOD)
|
||||
while not exists(f"{cache}.index"):
|
||||
logger.info(f"Cache not available, wait {self.WAIT_PERIOD}")
|
||||
time.sleep(self.WAIT_PERIOD)
|
||||
cache_path = os.path.split(cache)[0]
|
||||
os.makedirs(cache_path, exist_ok=True)
|
||||
@@ -369,11 +512,19 @@ class DatasetBuilder(object):
|
||||
return dataset
|
||||
|
||||
def build(
|
||||
self, csv_path,
|
||||
batch_size=8, shuffle=True, convert_to_uint=True,
|
||||
random_data_augmentation=False, random_time_crop=True,
|
||||
infinite_generator=True, cache_directory=None,
|
||||
wait_for_cache=False, num_parallel_calls=4, n_chunks_per_song=2,):
|
||||
self,
|
||||
csv_path: str,
|
||||
batch_size: int = 8,
|
||||
shuffle: bool = True,
|
||||
convert_to_uint: bool = True,
|
||||
random_data_augmentation: bool = False,
|
||||
random_time_crop: bool = True,
|
||||
infinite_generator: bool = True,
|
||||
cache_directory: Optional[str] = None,
|
||||
wait_for_cache: bool = False,
|
||||
num_parallel_calls: int = 4,
|
||||
n_chunks_per_song: float = 2,
|
||||
) -> Any:
|
||||
"""
|
||||
TO BE DOCUMENTED.
|
||||
"""
|
||||
@@ -385,7 +536,8 @@ class DatasetBuilder(object):
|
||||
buffer_size=200000,
|
||||
seed=self._random_seed,
|
||||
# useless since it is cached :
|
||||
reshuffle_each_iteration=True)
|
||||
reshuffle_each_iteration=True,
|
||||
)
|
||||
# Expand audio path.
|
||||
dataset = dataset.map(self.expand_path)
|
||||
# Load waveform, compute spectrogram, and filtering error,
|
||||
@@ -393,11 +545,11 @@ class DatasetBuilder(object):
|
||||
N = num_parallel_calls
|
||||
for instrument in self.instruments:
|
||||
dataset = (
|
||||
dataset
|
||||
.map(instrument.load_waveform, num_parallel_calls=N)
|
||||
dataset.map(instrument.load_waveform, num_parallel_calls=N)
|
||||
.filter(self.filter_error)
|
||||
.map(instrument.compute_spectrogram, num_parallel_calls=N)
|
||||
.map(instrument.filter_frequencies))
|
||||
.map(instrument.filter_frequencies)
|
||||
)
|
||||
dataset = dataset.map(self.filter_waveform)
|
||||
# Convert to uint before caching in order to save space.
|
||||
if convert_to_uint:
|
||||
@@ -428,26 +580,25 @@ class DatasetBuilder(object):
|
||||
# after croping but before converting back to float.
|
||||
if shuffle:
|
||||
dataset = dataset.shuffle(
|
||||
buffer_size=256, seed=self._random_seed,
|
||||
reshuffle_each_iteration=True)
|
||||
buffer_size=256, seed=self._random_seed, reshuffle_each_iteration=True
|
||||
)
|
||||
# Convert back to float32
|
||||
if convert_to_uint:
|
||||
for instrument in self.instruments:
|
||||
dataset = dataset.map(
|
||||
instrument.convert_to_float32, num_parallel_calls=N)
|
||||
instrument.convert_to_float32, num_parallel_calls=N
|
||||
)
|
||||
M = 8 # Parallel call post caching.
|
||||
# Must be applied with the same factor on mix and vocals.
|
||||
if random_data_augmentation:
|
||||
dataset = (
|
||||
dataset
|
||||
.map(self.random_time_stretch, num_parallel_calls=M)
|
||||
.map(self.random_pitch_shift, num_parallel_calls=M))
|
||||
dataset = dataset.map(self.random_time_stretch, num_parallel_calls=M).map(
|
||||
self.random_pitch_shift, num_parallel_calls=M
|
||||
)
|
||||
# Filter by shape (remove badly shaped tensors).
|
||||
for instrument in self.instruments:
|
||||
dataset = (
|
||||
dataset
|
||||
.filter(instrument.filter_shape)
|
||||
.map(instrument.reshape_spectrogram))
|
||||
dataset = dataset.filter(instrument.filter_shape).map(
|
||||
instrument.reshape_spectrogram
|
||||
)
|
||||
# Select features and annotation.
|
||||
dataset = dataset.map(self.map_features)
|
||||
# Make batch (done after selection to avoid
|
||||
|
||||
@@ -5,17 +5,19 @@
|
||||
|
||||
import importlib
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow.signal import stft, inverse_stft, hann_window
|
||||
# pylint: enable=import-error
|
||||
from tensorflow.signal import hann_window, inverse_stft, stft
|
||||
|
||||
from ..utils.tensor import pad_and_partition, pad_and_reshape
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
# pylint: enable=import-error
|
||||
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
placeholder = tf.compat.v1.placeholder
|
||||
@@ -23,29 +25,28 @@ placeholder = tf.compat.v1.placeholder
|
||||
|
||||
def get_model_function(model_type):
|
||||
"""
|
||||
Get tensorflow function of the model to be applied to the input tensor.
|
||||
For instance "unet.softmax_unet" will return the softmax_unet function
|
||||
in the "unet.py" submodule of the current module (spleeter.model).
|
||||
Get tensorflow function of the model to be applied to the input tensor.
|
||||
For instance "unet.softmax_unet" will return the softmax_unet function
|
||||
in the "unet.py" submodule of the current module (spleeter.model).
|
||||
|
||||
Params:
|
||||
- model_type: str
|
||||
the relative module path to the model function.
|
||||
Params:
|
||||
- model_type: str
|
||||
the relative module path to the model function.
|
||||
|
||||
Returns:
|
||||
A tensorflow function to be applied to the input tensor to get the
|
||||
multitrack output.
|
||||
Returns:
|
||||
A tensorflow function to be applied to the input tensor to get the
|
||||
multitrack output.
|
||||
"""
|
||||
relative_path_to_module = '.'.join(model_type.split('.')[:-1])
|
||||
model_name = model_type.split('.')[-1]
|
||||
main_module = '.'.join((__name__, 'functions'))
|
||||
path_to_module = f'{main_module}.{relative_path_to_module}'
|
||||
relative_path_to_module = ".".join(model_type.split(".")[:-1])
|
||||
model_name = model_type.split(".")[-1]
|
||||
main_module = ".".join((__name__, "functions"))
|
||||
path_to_module = f"{main_module}.{relative_path_to_module}"
|
||||
module = importlib.import_module(path_to_module)
|
||||
model_function = getattr(module, model_name)
|
||||
return model_function
|
||||
|
||||
|
||||
class InputProvider(object):
|
||||
|
||||
def __init__(self, params):
|
||||
self.params = params
|
||||
|
||||
@@ -61,16 +62,16 @@ class InputProvider(object):
|
||||
|
||||
|
||||
class WaveformInputProvider(InputProvider):
|
||||
|
||||
@property
|
||||
def input_names(self):
|
||||
return ["audio_id", "waveform"]
|
||||
|
||||
def get_input_dict_placeholders(self):
|
||||
shape = (None, self.params['n_channels'])
|
||||
shape = (None, self.params["n_channels"])
|
||||
features = {
|
||||
'waveform': placeholder(tf.float32, shape=shape, name="waveform"),
|
||||
'audio_id': placeholder(tf.string, name="audio_id")}
|
||||
"waveform": placeholder(tf.float32, shape=shape, name="waveform"),
|
||||
"audio_id": placeholder(tf.string, name="audio_id"),
|
||||
}
|
||||
return features
|
||||
|
||||
def get_feed_dict(self, features, waveform, audio_id):
|
||||
@@ -78,7 +79,6 @@ class WaveformInputProvider(InputProvider):
|
||||
|
||||
|
||||
class SpectralInputProvider(InputProvider):
|
||||
|
||||
def __init__(self, params):
|
||||
super().__init__(params)
|
||||
self.stft_input_name = "{}_stft".format(self.params["mix_name"])
|
||||
@@ -89,11 +89,17 @@ class SpectralInputProvider(InputProvider):
|
||||
|
||||
def get_input_dict_placeholders(self):
|
||||
features = {
|
||||
self.stft_input_name: placeholder(tf.complex64,
|
||||
shape=(None, self.params["frame_length"]//2+1,
|
||||
self.params['n_channels']),
|
||||
name=self.stft_input_name),
|
||||
'audio_id': placeholder(tf.string, name="audio_id")}
|
||||
self.stft_input_name: placeholder(
|
||||
tf.complex64,
|
||||
shape=(
|
||||
None,
|
||||
self.params["frame_length"] // 2 + 1,
|
||||
self.params["n_channels"],
|
||||
),
|
||||
name=self.stft_input_name,
|
||||
),
|
||||
"audio_id": placeholder(tf.string, name="audio_id"),
|
||||
}
|
||||
return features
|
||||
|
||||
def get_feed_dict(self, features, stft, audio_id):
|
||||
@@ -101,11 +107,13 @@ class SpectralInputProvider(InputProvider):
|
||||
|
||||
|
||||
class InputProviderFactory(object):
|
||||
|
||||
@staticmethod
|
||||
def get(params):
|
||||
stft_backend = params["stft_backend"]
|
||||
assert stft_backend in ("tensorflow", "librosa"), "Unexpected backend {}".format(stft_backend)
|
||||
assert stft_backend in (
|
||||
"tensorflow",
|
||||
"librosa",
|
||||
), "Unexpected backend {}".format(stft_backend)
|
||||
if stft_backend == "tensorflow":
|
||||
return WaveformInputProvider(params)
|
||||
else:
|
||||
@@ -113,7 +121,7 @@ class InputProviderFactory(object):
|
||||
|
||||
|
||||
class EstimatorSpecBuilder(object):
|
||||
""" A builder class that allows to builds a multitrack unet model
|
||||
"""A builder class that allows to builds a multitrack unet model
|
||||
estimator. The built model estimator has a different behaviour when
|
||||
used in a train/eval mode and in predict mode.
|
||||
|
||||
@@ -137,22 +145,22 @@ class EstimatorSpecBuilder(object):
|
||||
"""
|
||||
|
||||
# Supported model functions.
|
||||
DEFAULT_MODEL = 'unet.unet'
|
||||
DEFAULT_MODEL = "unet.unet"
|
||||
|
||||
# Supported loss functions.
|
||||
L1_MASK = 'L1_mask'
|
||||
WEIGHTED_L1_MASK = 'weighted_L1_mask'
|
||||
L1_MASK = "L1_mask"
|
||||
WEIGHTED_L1_MASK = "weighted_L1_mask"
|
||||
|
||||
# Supported optimizers.
|
||||
ADADELTA = 'Adadelta'
|
||||
SGD = 'SGD'
|
||||
ADADELTA = "Adadelta"
|
||||
SGD = "SGD"
|
||||
|
||||
# Math constants.
|
||||
WINDOW_COMPENSATION_FACTOR = 2./3.
|
||||
WINDOW_COMPENSATION_FACTOR = 2.0 / 3.0
|
||||
EPSILON = 1e-10
|
||||
|
||||
def __init__(self, features, params):
|
||||
""" Default constructor. Depending on built model
|
||||
"""Default constructor. Depending on built model
|
||||
usage, the provided features should be different:
|
||||
|
||||
* In train/eval mode: features is a dictionary with a
|
||||
@@ -169,20 +177,20 @@ class EstimatorSpecBuilder(object):
|
||||
self._features = features
|
||||
self._params = params
|
||||
# Get instrument name.
|
||||
self._mix_name = params['mix_name']
|
||||
self._instruments = params['instrument_list']
|
||||
self._mix_name = params["mix_name"]
|
||||
self._instruments = params["instrument_list"]
|
||||
# Get STFT/signals parameters
|
||||
self._n_channels = params['n_channels']
|
||||
self._T = params['T']
|
||||
self._F = params['F']
|
||||
self._frame_length = params['frame_length']
|
||||
self._frame_step = params['frame_step']
|
||||
self._n_channels = params["n_channels"]
|
||||
self._T = params["T"]
|
||||
self._F = params["F"]
|
||||
self._frame_length = params["frame_length"]
|
||||
self._frame_step = params["frame_step"]
|
||||
|
||||
def include_stft_computations(self):
|
||||
return self._params["stft_backend"] == "tensorflow"
|
||||
|
||||
def _build_model_outputs(self):
|
||||
""" Created a batch_sizexTxFxn_channels input tensor containing
|
||||
"""Created a batch_sizexTxFxn_channels input tensor containing
|
||||
mix magnitude spectrogram, then an output dict from it according
|
||||
to the selected model in internal parameters.
|
||||
|
||||
@@ -191,22 +199,21 @@ class EstimatorSpecBuilder(object):
|
||||
"""
|
||||
|
||||
input_tensor = self.spectrogram_feature
|
||||
model = self._params.get('model', None)
|
||||
model = self._params.get("model", None)
|
||||
if model is not None:
|
||||
model_type = model.get('type', self.DEFAULT_MODEL)
|
||||
model_type = model.get("type", self.DEFAULT_MODEL)
|
||||
else:
|
||||
model_type = self.DEFAULT_MODEL
|
||||
try:
|
||||
apply_model = get_model_function(model_type)
|
||||
except ModuleNotFoundError:
|
||||
raise ValueError(f'No model function {model_type} found')
|
||||
raise ValueError(f"No model function {model_type} found")
|
||||
self._model_outputs = apply_model(
|
||||
input_tensor,
|
||||
self._instruments,
|
||||
self._params['model']['params'])
|
||||
input_tensor, self._instruments, self._params["model"]["params"]
|
||||
)
|
||||
|
||||
def _build_loss(self, labels):
|
||||
""" Construct tensorflow loss and metrics
|
||||
"""Construct tensorflow loss and metrics
|
||||
|
||||
:param output_dict: dictionary of network outputs (key: instrument
|
||||
name, value: estimated spectrogram of the instrument)
|
||||
@@ -215,7 +222,7 @@ class EstimatorSpecBuilder(object):
|
||||
:returns: tensorflow (loss, metrics) tuple.
|
||||
"""
|
||||
output_dict = self.model_outputs
|
||||
loss_type = self._params.get('loss_type', self.L1_MASK)
|
||||
loss_type = self._params.get("loss_type", self.L1_MASK)
|
||||
if loss_type == self.L1_MASK:
|
||||
losses = {
|
||||
name: tf.reduce_mean(tf.abs(output - labels[name]))
|
||||
@@ -224,11 +231,9 @@ class EstimatorSpecBuilder(object):
|
||||
elif loss_type == self.WEIGHTED_L1_MASK:
|
||||
losses = {
|
||||
name: tf.reduce_mean(
|
||||
tf.reduce_mean(
|
||||
labels[name],
|
||||
axis=[1, 2, 3],
|
||||
keep_dims=True) *
|
||||
tf.abs(output - labels[name]))
|
||||
tf.reduce_mean(labels[name], axis=[1, 2, 3], keep_dims=True)
|
||||
* tf.abs(output - labels[name])
|
||||
)
|
||||
for name, output in output_dict.items()
|
||||
}
|
||||
else:
|
||||
@@ -236,20 +241,20 @@ class EstimatorSpecBuilder(object):
|
||||
loss = tf.reduce_sum(list(losses.values()))
|
||||
# Add metrics for monitoring each instrument.
|
||||
metrics = {k: tf.compat.v1.metrics.mean(v) for k, v in losses.items()}
|
||||
metrics['absolute_difference'] = tf.compat.v1.metrics.mean(loss)
|
||||
metrics["absolute_difference"] = tf.compat.v1.metrics.mean(loss)
|
||||
return loss, metrics
|
||||
|
||||
def _build_optimizer(self):
|
||||
""" Builds an optimizer instance from internal parameter values.
|
||||
"""Builds an optimizer instance from internal parameter values.
|
||||
|
||||
Default to AdamOptimizer if not specified.
|
||||
|
||||
:returns: Optimizer instance from internal configuration.
|
||||
"""
|
||||
name = self._params.get('optimizer')
|
||||
name = self._params.get("optimizer")
|
||||
if name == self.ADADELTA:
|
||||
return tf.compat.v1.train.AdadeltaOptimizer()
|
||||
rate = self._params['learning_rate']
|
||||
rate = self._params["learning_rate"]
|
||||
if name == self.SGD:
|
||||
return tf.compat.v1.train.GradientDescentOptimizer(rate)
|
||||
return tf.compat.v1.train.AdamOptimizer(rate)
|
||||
@@ -260,15 +265,15 @@ class EstimatorSpecBuilder(object):
|
||||
|
||||
@property
|
||||
def stft_name(self):
|
||||
return f'{self._mix_name}_stft'
|
||||
return f"{self._mix_name}_stft"
|
||||
|
||||
@property
|
||||
def spectrogram_name(self):
|
||||
return f'{self._mix_name}_spectrogram'
|
||||
return f"{self._mix_name}_spectrogram"
|
||||
|
||||
def _build_stft_feature(self):
|
||||
""" Compute STFT of waveform and slice the STFT in segment
|
||||
with the right length to feed the network.
|
||||
"""Compute STFT of waveform and slice the STFT in segment
|
||||
with the right length to feed the network.
|
||||
"""
|
||||
|
||||
stft_name = self.stft_name
|
||||
@@ -276,25 +281,30 @@ class EstimatorSpecBuilder(object):
|
||||
|
||||
if stft_name not in self._features:
|
||||
# pad input with a frame of zeros
|
||||
waveform = tf.concat([
|
||||
tf.zeros((self._frame_length, self._n_channels)),
|
||||
self._features['waveform']
|
||||
],
|
||||
0
|
||||
)
|
||||
waveform = tf.concat(
|
||||
[
|
||||
tf.zeros((self._frame_length, self._n_channels)),
|
||||
self._features["waveform"],
|
||||
],
|
||||
0,
|
||||
)
|
||||
stft_feature = tf.transpose(
|
||||
stft(
|
||||
tf.transpose(waveform),
|
||||
self._frame_length,
|
||||
self._frame_step,
|
||||
window_fn=lambda frame_length, dtype: (
|
||||
hann_window(frame_length, periodic=True, dtype=dtype)),
|
||||
pad_end=True),
|
||||
perm=[1, 2, 0])
|
||||
self._features[f'{self._mix_name}_stft'] = stft_feature
|
||||
hann_window(frame_length, periodic=True, dtype=dtype)
|
||||
),
|
||||
pad_end=True,
|
||||
),
|
||||
perm=[1, 2, 0],
|
||||
)
|
||||
self._features[f"{self._mix_name}_stft"] = stft_feature
|
||||
if spec_name not in self._features:
|
||||
self._features[spec_name] = tf.abs(
|
||||
pad_and_partition(self._features[stft_name], self._T))[:, :, :self._F, :]
|
||||
pad_and_partition(self._features[stft_name], self._T)
|
||||
)[:, :, : self._F, :]
|
||||
|
||||
@property
|
||||
def model_outputs(self):
|
||||
@@ -333,25 +343,29 @@ class EstimatorSpecBuilder(object):
|
||||
return self._masked_stfts
|
||||
|
||||
def _inverse_stft(self, stft_t, time_crop=None):
|
||||
""" Inverse and reshape the given STFT
|
||||
"""Inverse and reshape the given STFT
|
||||
|
||||
:param stft_t: input STFT
|
||||
:returns: inverse STFT (waveform)
|
||||
"""
|
||||
inversed = inverse_stft(
|
||||
tf.transpose(stft_t, perm=[2, 0, 1]),
|
||||
self._frame_length,
|
||||
self._frame_step,
|
||||
window_fn=lambda frame_length, dtype: (
|
||||
hann_window(frame_length, periodic=True, dtype=dtype))
|
||||
) * self.WINDOW_COMPENSATION_FACTOR
|
||||
inversed = (
|
||||
inverse_stft(
|
||||
tf.transpose(stft_t, perm=[2, 0, 1]),
|
||||
self._frame_length,
|
||||
self._frame_step,
|
||||
window_fn=lambda frame_length, dtype: (
|
||||
hann_window(frame_length, periodic=True, dtype=dtype)
|
||||
),
|
||||
)
|
||||
* self.WINDOW_COMPENSATION_FACTOR
|
||||
)
|
||||
reshaped = tf.transpose(inversed)
|
||||
if time_crop is None:
|
||||
time_crop = tf.shape(self._features['waveform'])[0]
|
||||
return reshaped[self._frame_length:self._frame_length+time_crop, :]
|
||||
time_crop = tf.shape(self._features["waveform"])[0]
|
||||
return reshaped[self._frame_length : self._frame_length + time_crop, :]
|
||||
|
||||
def _build_mwf_output_waveform(self):
|
||||
""" Perform separation with multichannel Wiener Filtering using Norbert.
|
||||
"""Perform separation with multichannel Wiener Filtering using Norbert.
|
||||
Note: multichannel Wiener Filtering is not coded in Tensorflow and thus
|
||||
may be quite slow.
|
||||
|
||||
@@ -359,36 +373,42 @@ class EstimatorSpecBuilder(object):
|
||||
value: estimated waveform of the instrument)
|
||||
"""
|
||||
import norbert # pylint: disable=import-error
|
||||
|
||||
output_dict = self.model_outputs
|
||||
x = self.stft_feature
|
||||
v = tf.stack(
|
||||
[
|
||||
pad_and_reshape(
|
||||
output_dict[f'{instrument}_spectrogram'],
|
||||
output_dict[f"{instrument}_spectrogram"],
|
||||
self._frame_length,
|
||||
self._F)[:tf.shape(x)[0], ...]
|
||||
self._F,
|
||||
)[: tf.shape(x)[0], ...]
|
||||
for instrument in self._instruments
|
||||
],
|
||||
axis=3)
|
||||
axis=3,
|
||||
)
|
||||
input_args = [v, x]
|
||||
stft_function = tf.py_function(
|
||||
lambda v, x: norbert.wiener(v.numpy(), x.numpy()),
|
||||
input_args,
|
||||
tf.complex64),
|
||||
stft_function = (
|
||||
tf.py_function(
|
||||
lambda v, x: norbert.wiener(v.numpy(), x.numpy()),
|
||||
input_args,
|
||||
tf.complex64,
|
||||
),
|
||||
)
|
||||
return {
|
||||
instrument: self._inverse_stft(stft_function[0][:, :, :, k])
|
||||
for k, instrument in enumerate(self._instruments)
|
||||
}
|
||||
|
||||
def _extend_mask(self, mask):
|
||||
""" Extend mask, from reduced number of frequency bin to the number of
|
||||
"""Extend mask, from reduced number of frequency bin to the number of
|
||||
frequency bin in the STFT.
|
||||
|
||||
:param mask: restricted mask
|
||||
:returns: extended mask
|
||||
:raise ValueError: If invalid mask_extension parameter is set.
|
||||
"""
|
||||
extension = self._params['mask_extension']
|
||||
extension = self._params["mask_extension"]
|
||||
# Extend with average
|
||||
# (dispatch according to energy in the processed band)
|
||||
if extension == "average":
|
||||
@@ -397,13 +417,9 @@ class EstimatorSpecBuilder(object):
|
||||
# (avoid extension artifacts but not conservative separation)
|
||||
elif extension == "zeros":
|
||||
mask_shape = tf.shape(mask)
|
||||
extension_row = tf.zeros((
|
||||
mask_shape[0],
|
||||
mask_shape[1],
|
||||
1,
|
||||
mask_shape[-1]))
|
||||
extension_row = tf.zeros((mask_shape[0], mask_shape[1], 1, mask_shape[-1]))
|
||||
else:
|
||||
raise ValueError(f'Invalid mask_extension parameter {extension}')
|
||||
raise ValueError(f"Invalid mask_extension parameter {extension}")
|
||||
n_extra_row = self._frame_length // 2 + 1 - self._F
|
||||
extension = tf.tile(extension_row, [1, 1, n_extra_row, 1])
|
||||
return tf.concat([mask, extension], axis=2)
|
||||
@@ -415,29 +431,31 @@ class EstimatorSpecBuilder(object):
|
||||
"""
|
||||
output_dict = self.model_outputs
|
||||
stft_feature = self.stft_feature
|
||||
separation_exponent = self._params['separation_exponent']
|
||||
output_sum = tf.reduce_sum(
|
||||
[e ** separation_exponent for e in output_dict.values()],
|
||||
axis=0
|
||||
) + self.EPSILON
|
||||
separation_exponent = self._params["separation_exponent"]
|
||||
output_sum = (
|
||||
tf.reduce_sum(
|
||||
[e ** separation_exponent for e in output_dict.values()], axis=0
|
||||
)
|
||||
+ self.EPSILON
|
||||
)
|
||||
out = {}
|
||||
for instrument in self._instruments:
|
||||
output = output_dict[f'{instrument}_spectrogram']
|
||||
output = output_dict[f"{instrument}_spectrogram"]
|
||||
# Compute mask with the model.
|
||||
instrument_mask = (output ** separation_exponent
|
||||
+ (self.EPSILON / len(output_dict))) / output_sum
|
||||
instrument_mask = (
|
||||
output ** separation_exponent + (self.EPSILON / len(output_dict))
|
||||
) / output_sum
|
||||
# Extend mask;
|
||||
instrument_mask = self._extend_mask(instrument_mask)
|
||||
# Stack back mask.
|
||||
old_shape = tf.shape(instrument_mask)
|
||||
new_shape = tf.concat(
|
||||
[[old_shape[0] * old_shape[1]], old_shape[2:]],
|
||||
axis=0)
|
||||
[[old_shape[0] * old_shape[1]], old_shape[2:]], axis=0
|
||||
)
|
||||
instrument_mask = tf.reshape(instrument_mask, new_shape)
|
||||
# Remove padded part (for mask having the same size as STFT);
|
||||
|
||||
instrument_mask = instrument_mask[
|
||||
:tf.shape(stft_feature)[0], ...]
|
||||
instrument_mask = instrument_mask[: tf.shape(stft_feature)[0], ...]
|
||||
out[instrument] = instrument_mask
|
||||
self._masks = out
|
||||
|
||||
@@ -449,7 +467,7 @@ class EstimatorSpecBuilder(object):
|
||||
self._masked_stfts = out
|
||||
|
||||
def _build_manual_output_waveform(self, masked_stft):
|
||||
""" Perform ratio mask separation
|
||||
"""Perform ratio mask separation
|
||||
|
||||
:param output_dict: dictionary of estimated spectrogram (key: instrument
|
||||
name, value: estimated spectrogram of the instrument)
|
||||
@@ -463,14 +481,14 @@ class EstimatorSpecBuilder(object):
|
||||
return output_waveform
|
||||
|
||||
def _build_output_waveform(self, masked_stft):
|
||||
""" Build output waveform from given output dict in order to be used in
|
||||
"""Build output waveform from given output dict in order to be used in
|
||||
prediction context. Regarding of the configuration building method will
|
||||
be using MWF.
|
||||
|
||||
:returns: Built output waveform.
|
||||
"""
|
||||
|
||||
if self._params.get('MWF', False):
|
||||
if self._params.get("MWF", False):
|
||||
output_waveform = self._build_mwf_output_waveform()
|
||||
else:
|
||||
output_waveform = self._build_manual_output_waveform(masked_stft)
|
||||
@@ -482,11 +500,11 @@ class EstimatorSpecBuilder(object):
|
||||
else:
|
||||
self._outputs = self.masked_stfts
|
||||
|
||||
if 'audio_id' in self._features:
|
||||
self._outputs['audio_id'] = self._features['audio_id']
|
||||
if "audio_id" in self._features:
|
||||
self._outputs["audio_id"] = self._features["audio_id"]
|
||||
|
||||
def build_predict_model(self):
|
||||
""" Builder interface for creating model instance that aims to perform
|
||||
"""Builder interface for creating model instance that aims to perform
|
||||
prediction / inference over given track. The output of such estimator
|
||||
will be a dictionary with a "<instrument>" key per separated instrument
|
||||
, associated to the estimated separated waveform of the instrument.
|
||||
@@ -495,11 +513,11 @@ class EstimatorSpecBuilder(object):
|
||||
"""
|
||||
|
||||
return tf.estimator.EstimatorSpec(
|
||||
tf.estimator.ModeKeys.PREDICT,
|
||||
predictions=self.outputs)
|
||||
tf.estimator.ModeKeys.PREDICT, predictions=self.outputs
|
||||
)
|
||||
|
||||
def build_evaluation_model(self, labels):
|
||||
""" Builder interface for creating model instance that aims to perform
|
||||
"""Builder interface for creating model instance that aims to perform
|
||||
model evaluation. The output of such estimator will be a dictionary
|
||||
with a key "<instrument>_spectrogram" per separated instrument,
|
||||
associated to the estimated separated instrument magnitude spectrogram.
|
||||
@@ -509,12 +527,11 @@ class EstimatorSpecBuilder(object):
|
||||
"""
|
||||
loss, metrics = self._build_loss(labels)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
tf.estimator.ModeKeys.EVAL,
|
||||
loss=loss,
|
||||
eval_metric_ops=metrics)
|
||||
tf.estimator.ModeKeys.EVAL, loss=loss, eval_metric_ops=metrics
|
||||
)
|
||||
|
||||
def build_train_model(self, labels):
|
||||
""" Builder interface for creating model instance that aims to perform
|
||||
"""Builder interface for creating model instance that aims to perform
|
||||
model training. The output of such estimator will be a dictionary
|
||||
with a key "<instrument>_spectrogram" per separated instrument,
|
||||
associated to the estimated separated instrument magnitude spectrogram.
|
||||
@@ -525,8 +542,8 @@ class EstimatorSpecBuilder(object):
|
||||
loss, metrics = self._build_loss(labels)
|
||||
optimizer = self._build_optimizer()
|
||||
train_operation = optimizer.minimize(
|
||||
loss=loss,
|
||||
global_step=tf.compat.v1.train.get_global_step())
|
||||
loss=loss, global_step=tf.compat.v1.train.get_global_step()
|
||||
)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=tf.estimator.ModeKeys.TRAIN,
|
||||
loss=loss,
|
||||
@@ -539,9 +556,9 @@ def model_fn(features, labels, mode, params, config):
|
||||
"""
|
||||
|
||||
:param features:
|
||||
:param labels:
|
||||
:param labels:
|
||||
:param mode: Estimator mode.
|
||||
:param params:
|
||||
:param params:
|
||||
:param config: TF configuration (not used).
|
||||
:returns: Built EstimatorSpec.
|
||||
:raise ValueError: If estimator mode is not supported.
|
||||
@@ -553,4 +570,4 @@ def model_fn(features, labels, mode, params, config):
|
||||
return builder.build_evaluation_model(labels)
|
||||
elif mode == tf.estimator.ModeKeys.TRAIN:
|
||||
return builder.build_train_model(labels)
|
||||
raise ValueError(f'Unknown mode {mode}')
|
||||
raise ValueError(f"Unknown mode {mode}")
|
||||
|
||||
@@ -3,25 +3,45 @@
|
||||
|
||||
""" This package provide model functions. """
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
from typing import Callable, Dict, Iterable, Optional
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import tensorflow as tf
|
||||
|
||||
# pylint: enable=import-error
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
def apply(function, input_tensor, instruments, params={}):
|
||||
""" Apply given function to the input tensor.
|
||||
|
||||
:param function: Function to be applied to tensor.
|
||||
:param input_tensor: Tensor to apply blstm to.
|
||||
:param instruments: Iterable that provides a collection of instruments.
|
||||
:param params: (Optional) dict of BLSTM parameters.
|
||||
:returns: Created output tensor dict.
|
||||
def apply(
|
||||
function: Callable,
|
||||
input_tensor: tf.Tensor,
|
||||
instruments: Iterable[str],
|
||||
params: Optional[Dict] = None,
|
||||
) -> Dict:
|
||||
"""
|
||||
output_dict = {}
|
||||
Apply given function to the input tensor.
|
||||
|
||||
Parameters:
|
||||
function:
|
||||
Function to be applied to tensor.
|
||||
input_tensor (tensorflow.Tensor):
|
||||
Tensor to apply blstm to.
|
||||
instruments (Iterable[str]):
|
||||
Iterable that provides a collection of instruments.
|
||||
params:
|
||||
(Optional) dict of BLSTM parameters.
|
||||
|
||||
Returns:
|
||||
Created output tensor dict.
|
||||
"""
|
||||
output_dict: Dict = {}
|
||||
for instrument in instruments:
|
||||
out_name = f'{instrument}_spectrogram'
|
||||
out_name = f"{instrument}_spectrogram"
|
||||
output_dict[out_name] = function(
|
||||
input_tensor,
|
||||
output_name=out_name,
|
||||
params=params)
|
||||
input_tensor, output_name=out_name, params=params or {}
|
||||
)
|
||||
return output_dict
|
||||
|
||||
@@ -20,7 +20,11 @@
|
||||
selection (LSTM layer dropout rate, regularization strength).
|
||||
"""
|
||||
|
||||
from typing import Dict, Optional
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import tensorflow as tf
|
||||
from tensorflow.compat.v1.keras.initializers import he_uniform
|
||||
from tensorflow.compat.v1.keras.layers import CuDNNLSTM
|
||||
from tensorflow.keras.layers import (
|
||||
@@ -28,34 +32,48 @@ from tensorflow.keras.layers import (
|
||||
Dense,
|
||||
Flatten,
|
||||
Reshape,
|
||||
TimeDistributed)
|
||||
# pylint: enable=import-error
|
||||
TimeDistributed,
|
||||
)
|
||||
|
||||
from . import apply
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
# pylint: enable=import-error
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
def apply_blstm(input_tensor, output_name='output', params={}):
|
||||
""" Apply BLSTM to the given input_tensor.
|
||||
|
||||
:param input_tensor: Input of the model.
|
||||
:param output_name: (Optional) name of the output, default to 'output'.
|
||||
:param params: (Optional) dict of BLSTM parameters.
|
||||
:returns: Output tensor.
|
||||
def apply_blstm(
|
||||
input_tensor: tf.Tensor, output_name: str = "output", params: Optional[Dict] = None
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
units = params.get('lstm_units', 250)
|
||||
Apply BLSTM to the given input_tensor.
|
||||
|
||||
Parameters:
|
||||
input_tensor (tensorflow.Tensor):
|
||||
Input of the model.
|
||||
output_name (str):
|
||||
(Optional) name of the output, default to 'output'.
|
||||
params (Optional[Dict]):
|
||||
(Optional) dict of BLSTM parameters.
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
Output tensor.
|
||||
"""
|
||||
if params is None:
|
||||
params = {}
|
||||
units: int = params.get("lstm_units", 250)
|
||||
kernel_initializer = he_uniform(seed=50)
|
||||
flatten_input = TimeDistributed(Flatten())((input_tensor))
|
||||
|
||||
def create_bidirectional():
|
||||
return Bidirectional(
|
||||
CuDNNLSTM(
|
||||
units,
|
||||
kernel_initializer=kernel_initializer,
|
||||
return_sequences=True))
|
||||
units, kernel_initializer=kernel_initializer, return_sequences=True
|
||||
)
|
||||
)
|
||||
|
||||
l1 = create_bidirectional()((flatten_input))
|
||||
l2 = create_bidirectional()((l1))
|
||||
@@ -63,14 +81,18 @@ def apply_blstm(input_tensor, output_name='output', params={}):
|
||||
dense = TimeDistributed(
|
||||
Dense(
|
||||
int(flatten_input.shape[2]),
|
||||
activation='relu',
|
||||
kernel_initializer=kernel_initializer))((l3))
|
||||
output = TimeDistributed(
|
||||
Reshape(input_tensor.shape[2:]),
|
||||
name=output_name)(dense)
|
||||
activation="relu",
|
||||
kernel_initializer=kernel_initializer,
|
||||
)
|
||||
)((l3))
|
||||
output: tf.Tensor = TimeDistributed(
|
||||
Reshape(input_tensor.shape[2:]), name=output_name
|
||||
)(dense)
|
||||
return output
|
||||
|
||||
|
||||
def blstm(input_tensor, output_name='output', params={}):
|
||||
def blstm(
|
||||
input_tensor: tf.Tensor, output_name: str = "output", params: Optional[Dict] = None
|
||||
) -> tf.Tensor:
|
||||
""" Model function applier. """
|
||||
return apply(apply_blstm, input_tensor, output_name, params)
|
||||
|
||||
@@ -2,92 +2,109 @@
|
||||
# coding: utf8
|
||||
|
||||
"""
|
||||
This module contains building functions for U-net source
|
||||
separation models in a similar way as in A. Jansson et al. "Singing
|
||||
voice separation with deep u-net convolutional networks", ISMIR 2017.
|
||||
Each instrument is modeled by a single U-net convolutional
|
||||
/ deconvolutional network that take a mix spectrogram as input and the
|
||||
estimated sound spectrogram as output.
|
||||
This module contains building functions for U-net source
|
||||
separation models in a similar way as in A. Jansson et al. :
|
||||
|
||||
"Singing voice separation with deep u-net convolutional networks",
|
||||
ISMIR 2017
|
||||
|
||||
Each instrument is modeled by a single U-net
|
||||
convolutional / deconvolutional network that take a mix spectrogram
|
||||
as input and the estimated sound spectrogram as output.
|
||||
"""
|
||||
|
||||
from functools import partial
|
||||
from typing import Any, Dict, Iterable, Optional
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow.compat.v1 import logging
|
||||
from tensorflow.compat.v1.keras.initializers import he_uniform
|
||||
from tensorflow.keras.layers import (
|
||||
ELU,
|
||||
BatchNormalization,
|
||||
Concatenate,
|
||||
Conv2D,
|
||||
Conv2DTranspose,
|
||||
Dropout,
|
||||
ELU,
|
||||
LeakyReLU,
|
||||
Multiply,
|
||||
ReLU,
|
||||
Softmax)
|
||||
from tensorflow.compat.v1 import logging
|
||||
from tensorflow.compat.v1.keras.initializers import he_uniform
|
||||
# pylint: enable=import-error
|
||||
Softmax,
|
||||
)
|
||||
|
||||
from . import apply
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
# pylint: enable=import-error
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
def _get_conv_activation_layer(params):
|
||||
def _get_conv_activation_layer(params: Dict) -> Any:
|
||||
"""
|
||||
> To be documented.
|
||||
|
||||
:param params:
|
||||
:returns: Required Activation function.
|
||||
Parameters:
|
||||
params (Dict):
|
||||
|
||||
Returns:
|
||||
Any:
|
||||
Required Activation function.
|
||||
"""
|
||||
conv_activation = params.get('conv_activation')
|
||||
if conv_activation == 'ReLU':
|
||||
conv_activation: str = params.get("conv_activation")
|
||||
if conv_activation == "ReLU":
|
||||
return ReLU()
|
||||
elif conv_activation == 'ELU':
|
||||
elif conv_activation == "ELU":
|
||||
return ELU()
|
||||
return LeakyReLU(0.2)
|
||||
|
||||
|
||||
def _get_deconv_activation_layer(params):
|
||||
def _get_deconv_activation_layer(params: Dict) -> Any:
|
||||
"""
|
||||
> To be documented.
|
||||
|
||||
:param params:
|
||||
:returns: Required Activation function.
|
||||
Parameters:
|
||||
params (Dict):
|
||||
|
||||
Returns:
|
||||
Any:
|
||||
Required Activation function.
|
||||
"""
|
||||
deconv_activation = params.get('deconv_activation')
|
||||
if deconv_activation == 'LeakyReLU':
|
||||
deconv_activation: str = params.get("deconv_activation")
|
||||
if deconv_activation == "LeakyReLU":
|
||||
return LeakyReLU(0.2)
|
||||
elif deconv_activation == 'ELU':
|
||||
elif deconv_activation == "ELU":
|
||||
return ELU()
|
||||
return ReLU()
|
||||
|
||||
|
||||
def apply_unet(
|
||||
input_tensor,
|
||||
output_name='output',
|
||||
params={},
|
||||
output_mask_logit=False):
|
||||
""" Apply a convolutionnal U-net to model a single instrument (one U-net
|
||||
input_tensor: tf.Tensor,
|
||||
output_name: str = "output",
|
||||
params: Optional[Dict] = None,
|
||||
output_mask_logit: bool = False,
|
||||
) -> Any:
|
||||
"""
|
||||
Apply a convolutionnal U-net to model a single instrument (one U-net
|
||||
is used for each instrument).
|
||||
|
||||
:param input_tensor:
|
||||
:param output_name: (Optional) , default to 'output'
|
||||
:param params: (Optional) , default to empty dict.
|
||||
:param output_mask_logit: (Optional) , default to False.
|
||||
Parameters:
|
||||
input_tensor (tensorflow.Tensor):
|
||||
output_name (str):
|
||||
params (Optional[Dict]):
|
||||
output_mask_logit (bool):
|
||||
"""
|
||||
logging.info(f'Apply unet for {output_name}')
|
||||
conv_n_filters = params.get('conv_n_filters', [16, 32, 64, 128, 256, 512])
|
||||
logging.info(f"Apply unet for {output_name}")
|
||||
conv_n_filters = params.get("conv_n_filters", [16, 32, 64, 128, 256, 512])
|
||||
conv_activation_layer = _get_conv_activation_layer(params)
|
||||
deconv_activation_layer = _get_deconv_activation_layer(params)
|
||||
kernel_initializer = he_uniform(seed=50)
|
||||
conv2d_factory = partial(
|
||||
Conv2D,
|
||||
strides=(2, 2),
|
||||
padding='same',
|
||||
kernel_initializer=kernel_initializer)
|
||||
Conv2D, strides=(2, 2), padding="same", kernel_initializer=kernel_initializer
|
||||
)
|
||||
# First layer.
|
||||
conv1 = conv2d_factory(conv_n_filters[0], (5, 5))(input_tensor)
|
||||
batch1 = BatchNormalization(axis=-1)(conv1)
|
||||
@@ -117,8 +134,9 @@ def apply_unet(
|
||||
conv2d_transpose_factory = partial(
|
||||
Conv2DTranspose,
|
||||
strides=(2, 2),
|
||||
padding='same',
|
||||
kernel_initializer=kernel_initializer)
|
||||
padding="same",
|
||||
kernel_initializer=kernel_initializer,
|
||||
)
|
||||
#
|
||||
up1 = conv2d_transpose_factory(conv_n_filters[4], (5, 5))((conv6))
|
||||
up1 = deconv_activation_layer(up1)
|
||||
@@ -157,46 +175,60 @@ def apply_unet(
|
||||
2,
|
||||
(4, 4),
|
||||
dilation_rate=(2, 2),
|
||||
activation='sigmoid',
|
||||
padding='same',
|
||||
kernel_initializer=kernel_initializer)((batch12))
|
||||
activation="sigmoid",
|
||||
padding="same",
|
||||
kernel_initializer=kernel_initializer,
|
||||
)((batch12))
|
||||
output = Multiply(name=output_name)([up7, input_tensor])
|
||||
return output
|
||||
return Conv2D(
|
||||
2,
|
||||
(4, 4),
|
||||
dilation_rate=(2, 2),
|
||||
padding='same',
|
||||
kernel_initializer=kernel_initializer)((batch12))
|
||||
padding="same",
|
||||
kernel_initializer=kernel_initializer,
|
||||
)((batch12))
|
||||
|
||||
|
||||
def unet(input_tensor, instruments, params={}):
|
||||
def unet(
|
||||
input_tensor: tf.Tensor, instruments: Iterable[str], params: Optional[Dict] = None
|
||||
) -> Dict:
|
||||
""" Model function applier. """
|
||||
return apply(apply_unet, input_tensor, instruments, params)
|
||||
|
||||
|
||||
def softmax_unet(input_tensor, instruments, params={}):
|
||||
""" Apply softmax to multitrack unet in order to have mask suming to one.
|
||||
def softmax_unet(
|
||||
input_tensor: tf.Tensor, instruments: Iterable[str], params: Optional[Dict] = None
|
||||
) -> Dict:
|
||||
"""
|
||||
Apply softmax to multitrack unet in order to have mask suming to one.
|
||||
|
||||
:param input_tensor: Tensor to apply blstm to.
|
||||
:param instruments: Iterable that provides a collection of instruments.
|
||||
:param params: (Optional) dict of BLSTM parameters.
|
||||
:returns: Created output tensor dict.
|
||||
Parameters:
|
||||
input_tensor (tensorflow.Tensor):
|
||||
Tensor to apply blstm to.
|
||||
instruments (Iterable[str]):
|
||||
Iterable that provides a collection of instruments.
|
||||
params (Optional[Dict]):
|
||||
(Optional) dict of BLSTM parameters.
|
||||
|
||||
Returns:
|
||||
Dict:
|
||||
Created output tensor dict.
|
||||
"""
|
||||
logit_mask_list = []
|
||||
for instrument in instruments:
|
||||
out_name = f'{instrument}_spectrogram'
|
||||
out_name = f"{instrument}_spectrogram"
|
||||
logit_mask_list.append(
|
||||
apply_unet(
|
||||
input_tensor,
|
||||
output_name=out_name,
|
||||
params=params,
|
||||
output_mask_logit=True))
|
||||
output_mask_logit=True,
|
||||
)
|
||||
)
|
||||
masks = Softmax(axis=4)(tf.stack(logit_mask_list, axis=4))
|
||||
output_dict = {}
|
||||
for i, instrument in enumerate(instruments):
|
||||
out_name = f'{instrument}_spectrogram'
|
||||
output_dict[out_name] = Multiply(name=out_name)([
|
||||
masks[..., i],
|
||||
input_tensor])
|
||||
out_name = f"{instrument}_spectrogram"
|
||||
output_dict[out_name] = Multiply(name=out_name)([masks[..., i], input_tensor])
|
||||
return output_dict
|
||||
|
||||
@@ -5,77 +5,91 @@
|
||||
This package provides tools for downloading model from network
|
||||
using remote storage abstraction.
|
||||
|
||||
:Example:
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> provider = MyProviderImplementation()
|
||||
>>> provider.get('/path/to/local/storage', params)
|
||||
```
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from os import environ, makedirs
|
||||
from os.path import exists, isabs, join, sep
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
class ModelProvider(ABC):
|
||||
"""
|
||||
A ModelProvider manages model files on disk and
|
||||
file download is not available.
|
||||
A ModelProvider manages model files on disk and
|
||||
file download is not available.
|
||||
"""
|
||||
|
||||
DEFAULT_MODEL_PATH = environ.get('MODEL_PATH', 'pretrained_models')
|
||||
MODEL_PROBE_PATH = '.probe'
|
||||
DEFAULT_MODEL_PATH: str = environ.get("MODEL_PATH", "pretrained_models")
|
||||
MODEL_PROBE_PATH: str = ".probe"
|
||||
|
||||
@abstractmethod
|
||||
def download(self, name, path):
|
||||
""" Download model denoted by the given name to disk.
|
||||
def download(_, name: str, path: str) -> None:
|
||||
"""
|
||||
Download model denoted by the given name to disk.
|
||||
|
||||
:param name: Name of the model to download.
|
||||
:param path: Path of the directory to save model into.
|
||||
Parameters:
|
||||
name (str):
|
||||
Name of the model to download.
|
||||
path (str):
|
||||
Path of the directory to save model into.
|
||||
"""
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def writeProbe(directory):
|
||||
""" Write a model probe file into the given directory.
|
||||
|
||||
:param directory: Directory to write probe into.
|
||||
def writeProbe(directory: str) -> None:
|
||||
"""
|
||||
probe = join(directory, ModelProvider.MODEL_PROBE_PATH)
|
||||
with open(probe, 'w') as stream:
|
||||
stream.write('OK')
|
||||
Write a model probe file into the given directory.
|
||||
|
||||
def get(self, model_directory):
|
||||
""" Ensures required model is available at given location.
|
||||
Parameters:
|
||||
directory (str):
|
||||
Directory to write probe into.
|
||||
"""
|
||||
probe: str = join(directory, ModelProvider.MODEL_PROBE_PATH)
|
||||
with open(probe, "w") as stream:
|
||||
stream.write("OK")
|
||||
|
||||
:param model_directory: Expected model_directory to be available.
|
||||
:raise IOError: If model can not be retrieved.
|
||||
def get(self, model_directory: str) -> str:
|
||||
"""
|
||||
Ensures required model is available at given location.
|
||||
|
||||
Parameters:
|
||||
model_directory (str):
|
||||
Expected model_directory to be available.
|
||||
|
||||
Raises:
|
||||
IOError:
|
||||
If model can not be retrieved.
|
||||
"""
|
||||
# Expend model directory if needed.
|
||||
if not isabs(model_directory):
|
||||
model_directory = join(self.DEFAULT_MODEL_PATH, model_directory)
|
||||
# Download it if not exists.
|
||||
model_probe = join(model_directory, self.MODEL_PROBE_PATH)
|
||||
model_probe: str = join(model_directory, self.MODEL_PROBE_PATH)
|
||||
if not exists(model_probe):
|
||||
if not exists(model_directory):
|
||||
makedirs(model_directory)
|
||||
self.download(
|
||||
model_directory.split(sep)[-1],
|
||||
model_directory)
|
||||
self.download(model_directory.split(sep)[-1], model_directory)
|
||||
self.writeProbe(model_directory)
|
||||
return model_directory
|
||||
|
||||
@classmethod
|
||||
def default(_: type) -> "ModelProvider":
|
||||
"""
|
||||
Builds and returns a default model provider.
|
||||
|
||||
def get_default_model_provider():
|
||||
""" Builds and returns a default model provider.
|
||||
Returns:
|
||||
ModelProvider:
|
||||
A default model provider instance to use.
|
||||
"""
|
||||
from .github import GithubModelProvider
|
||||
|
||||
:returns: A default model provider instance to use.
|
||||
"""
|
||||
from .github import GithubModelProvider
|
||||
host = environ.get('GITHUB_HOST', 'https://github.com')
|
||||
repository = environ.get('GITHUB_REPOSITORY', 'deezer/spleeter')
|
||||
release = environ.get('GITHUB_RELEASE', GithubModelProvider.LATEST_RELEASE)
|
||||
return GithubModelProvider(host, repository, release)
|
||||
return GithubModelProvider.from_environ()
|
||||
|
||||
@@ -4,41 +4,48 @@
|
||||
"""
|
||||
A ModelProvider backed by Github Release feature.
|
||||
|
||||
:Example:
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> from spleeter.model.provider import github
|
||||
>>> provider = github.GithubModelProvider(
|
||||
'github.com',
|
||||
'Deezer/spleeter',
|
||||
'latest')
|
||||
>>> provider.download('2stems', '/path/to/local/storage')
|
||||
```
|
||||
"""
|
||||
|
||||
import hashlib
|
||||
import tarfile
|
||||
import os
|
||||
|
||||
import tarfile
|
||||
from os import environ
|
||||
from tempfile import NamedTemporaryFile
|
||||
from typing import Dict
|
||||
|
||||
import requests
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import httpx
|
||||
|
||||
from ...utils.logging import logger
|
||||
from . import ModelProvider
|
||||
from ...utils.logging import get_logger
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
# pylint: enable=import-error
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
def compute_file_checksum(path):
|
||||
""" Computes given path file sha256.
|
||||
"""Computes given path file sha256.
|
||||
|
||||
:param path: Path of the file to compute checksum for.
|
||||
:returns: File checksum.
|
||||
"""
|
||||
sha256 = hashlib.sha256()
|
||||
with open(path, 'rb') as stream:
|
||||
for chunk in iter(lambda: stream.read(4096), b''):
|
||||
with open(path, "rb") as stream:
|
||||
for chunk in iter(lambda: stream.read(4096), b""):
|
||||
sha256.update(chunk)
|
||||
return sha256.hexdigest()
|
||||
|
||||
@@ -46,69 +53,104 @@ def compute_file_checksum(path):
|
||||
class GithubModelProvider(ModelProvider):
|
||||
""" A ModelProvider implementation backed on Github for remote storage. """
|
||||
|
||||
LATEST_RELEASE = 'v1.4.0'
|
||||
RELEASE_PATH = 'releases/download'
|
||||
CHECKSUM_INDEX = 'checksum.json'
|
||||
DEFAULT_HOST: str = "https://github.com"
|
||||
DEFAULT_REPOSITORY: str = "deezer/spleeter"
|
||||
|
||||
def __init__(self, host, repository, release):
|
||||
""" Default constructor.
|
||||
CHECKSUM_INDEX: str = "checksum.json"
|
||||
LATEST_RELEASE: str = "v1.4.0"
|
||||
RELEASE_PATH: str = "releases/download"
|
||||
|
||||
:param host: Host to the Github instance to reach.
|
||||
:param repository: Repository path within target Github.
|
||||
:param release: Release name to get models from.
|
||||
def __init__(self, host: str, repository: str, release: str) -> None:
|
||||
"""Default constructor.
|
||||
|
||||
Parameters:
|
||||
host (str):
|
||||
Host to the Github instance to reach.
|
||||
repository (str):
|
||||
Repository path within target Github.
|
||||
release (str):
|
||||
Release name to get models from.
|
||||
"""
|
||||
self._host = host
|
||||
self._repository = repository
|
||||
self._release = release
|
||||
self._host: str = host
|
||||
self._repository: str = repository
|
||||
self._release: str = release
|
||||
|
||||
def checksum(self, name):
|
||||
""" Downloads and returns reference checksum for the given model name.
|
||||
|
||||
:param name: Name of the model to get checksum for.
|
||||
:returns: Checksum of the required model.
|
||||
:raise ValueError: If the given model name is not indexed.
|
||||
@classmethod
|
||||
def from_environ(cls: type) -> "GithubModelProvider":
|
||||
"""
|
||||
url = '{}/{}/{}/{}/{}'.format(
|
||||
self._host,
|
||||
self._repository,
|
||||
self.RELEASE_PATH,
|
||||
self._release,
|
||||
self.CHECKSUM_INDEX)
|
||||
response = requests.get(url)
|
||||
Factory method that creates provider from envvars.
|
||||
|
||||
Returns:
|
||||
GithubModelProvider:
|
||||
Created instance.
|
||||
"""
|
||||
return cls(
|
||||
environ.get("GITHUB_HOST", cls.DEFAULT_HOST),
|
||||
environ.get("GITHUB_REPOSITORY", cls.DEFAULT_REPOSITORY),
|
||||
environ.get("GITHUB_RELEASE", cls.LATEST_RELEASE),
|
||||
)
|
||||
|
||||
def checksum(self, name: str) -> str:
|
||||
"""
|
||||
Downloads and returns reference checksum for the given model name.
|
||||
|
||||
Parameters:
|
||||
name (str):
|
||||
Name of the model to get checksum for.
|
||||
Returns:
|
||||
str:
|
||||
Checksum of the required model.
|
||||
|
||||
Raises:
|
||||
ValueError:
|
||||
If the given model name is not indexed.
|
||||
"""
|
||||
url: str = "/".join(
|
||||
(
|
||||
self._host,
|
||||
self._repository,
|
||||
self.RELEASE_PATH,
|
||||
self._release,
|
||||
self.CHECKSUM_INDEX,
|
||||
)
|
||||
)
|
||||
response: httpx.Response = httpx.get(url)
|
||||
response.raise_for_status()
|
||||
index = response.json()
|
||||
index: Dict = response.json()
|
||||
if name not in index:
|
||||
raise ValueError('No checksum for model {}'.format(name))
|
||||
raise ValueError(f"No checksum for model {name}")
|
||||
return index[name]
|
||||
|
||||
def download(self, name, path):
|
||||
""" Download model denoted by the given name to disk.
|
||||
|
||||
:param name: Name of the model to download.
|
||||
:param path: Path of the directory to save model into.
|
||||
def download(self, name: str, path: str) -> None:
|
||||
"""
|
||||
url = '{}/{}/{}/{}/{}.tar.gz'.format(
|
||||
self._host,
|
||||
self._repository,
|
||||
self.RELEASE_PATH,
|
||||
self._release,
|
||||
name)
|
||||
get_logger().info('Downloading model archive %s', url)
|
||||
with requests.get(url, stream=True) as response:
|
||||
response.raise_for_status()
|
||||
archive = NamedTemporaryFile(delete=False)
|
||||
try:
|
||||
with archive as stream:
|
||||
# Note: check for chunk size parameters ?
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
if chunk:
|
||||
Download model denoted by the given name to disk.
|
||||
|
||||
Parameters:
|
||||
name (str):
|
||||
Name of the model to download.
|
||||
path (str):
|
||||
Path of the directory to save model into.
|
||||
"""
|
||||
url: str = "/".join(
|
||||
(self._host, self._repository, self.RELEASE_PATH, self._release, name)
|
||||
)
|
||||
url = f"{url}.tar.gz"
|
||||
logger.info(f"Downloading model archive {url}")
|
||||
with httpx.Client(http2=True) as client:
|
||||
with client.stream("GET", url) as response:
|
||||
response.raise_for_status()
|
||||
archive = NamedTemporaryFile(delete=False)
|
||||
try:
|
||||
with archive as stream:
|
||||
for chunk in response.iter_raw():
|
||||
stream.write(chunk)
|
||||
get_logger().info('Validating archive checksum')
|
||||
if compute_file_checksum(archive.name) != self.checksum(name):
|
||||
raise IOError('Downloaded file is corrupted, please retry')
|
||||
get_logger().info('Extracting downloaded %s archive', name)
|
||||
with tarfile.open(name=archive.name) as tar:
|
||||
tar.extractall(path=path)
|
||||
finally:
|
||||
os.unlink(archive.name)
|
||||
get_logger().info('%s model file(s) extracted', name)
|
||||
logger.info("Validating archive checksum")
|
||||
checksum: str = compute_file_checksum(archive.name)
|
||||
if checksum != self.checksum(name):
|
||||
raise IOError("Downloaded file is corrupted, please retry")
|
||||
logger.info(f"Extracting downloaded {name} archive")
|
||||
with tarfile.open(name=archive.name) as tar:
|
||||
tar.extractall(path=path)
|
||||
finally:
|
||||
os.unlink(archive.name)
|
||||
logger.info(f"{name} model file(s) extracted")
|
||||
|
||||
128
spleeter/options.py
Normal file
128
spleeter/options.py
Normal file
@@ -0,0 +1,128 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
""" This modules provides spleeter command as well as CLI parsing methods. """
|
||||
|
||||
from os.path import join
|
||||
from tempfile import gettempdir
|
||||
|
||||
from typer import Argument, Option
|
||||
from typer.models import ArgumentInfo, OptionInfo
|
||||
|
||||
from .audio import Codec, STFTBackend
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
AudioInputArgument: ArgumentInfo = Argument(
|
||||
...,
|
||||
help="List of input audio file path",
|
||||
exists=True,
|
||||
file_okay=True,
|
||||
dir_okay=False,
|
||||
readable=True,
|
||||
resolve_path=True,
|
||||
)
|
||||
|
||||
AudioInputOption: OptionInfo = Option(
|
||||
None, "--inputs", "-i", help="(DEPRECATED) placeholder for deprecated input option"
|
||||
)
|
||||
|
||||
AudioAdapterOption: OptionInfo = Option(
|
||||
"spleeter.audio.ffmpeg.FFMPEGProcessAudioAdapter",
|
||||
"--adapter",
|
||||
"-a",
|
||||
help="Name of the audio adapter to use for audio I/O",
|
||||
)
|
||||
|
||||
AudioOutputOption: OptionInfo = Option(
|
||||
join(gettempdir(), "separated_audio"),
|
||||
"--output_path",
|
||||
"-o",
|
||||
help="Path of the output directory to write audio files in",
|
||||
)
|
||||
|
||||
AudioOffsetOption: OptionInfo = Option(
|
||||
0.0, "--offset", "-s", help="Set the starting offset to separate audio from"
|
||||
)
|
||||
|
||||
AudioDurationOption: OptionInfo = Option(
|
||||
600.0,
|
||||
"--duration",
|
||||
"-d",
|
||||
help=(
|
||||
"Set a maximum duration for processing audio "
|
||||
"(only separate offset + duration first seconds of "
|
||||
"the input file)"
|
||||
),
|
||||
)
|
||||
|
||||
AudioSTFTBackendOption: OptionInfo = Option(
|
||||
STFTBackend.AUTO,
|
||||
"--stft-backend",
|
||||
"-B",
|
||||
case_sensitive=False,
|
||||
help=(
|
||||
"Who should be in charge of computing the stfts. Librosa is faster "
|
||||
'than tensorflow on CPU and uses less memory. "auto" will use '
|
||||
"tensorflow when GPU acceleration is available and librosa when not"
|
||||
),
|
||||
)
|
||||
|
||||
AudioCodecOption: OptionInfo = Option(
|
||||
Codec.WAV, "--codec", "-c", help="Audio codec to be used for the separated output"
|
||||
)
|
||||
|
||||
AudioBitrateOption: OptionInfo = Option(
|
||||
"128k", "--bitrate", "-b", help="Audio bitrate to be used for the separated output"
|
||||
)
|
||||
|
||||
FilenameFormatOption: OptionInfo = Option(
|
||||
"{filename}/{instrument}.{codec}",
|
||||
"--filename_format",
|
||||
"-f",
|
||||
help=(
|
||||
"Template string that will be formatted to generated"
|
||||
"output filename. Such template should be Python formattable"
|
||||
"string, and could use {filename}, {instrument}, and {codec}"
|
||||
"variables"
|
||||
),
|
||||
)
|
||||
|
||||
ModelParametersOption: OptionInfo = Option(
|
||||
"spleeter:2stems",
|
||||
"--params_filename",
|
||||
"-p",
|
||||
help="JSON filename that contains params",
|
||||
)
|
||||
|
||||
|
||||
MWFOption: OptionInfo = Option(
|
||||
False, "--mwf", help="Whether to use multichannel Wiener filtering for separation"
|
||||
)
|
||||
|
||||
MUSDBDirectoryOption: OptionInfo = Option(
|
||||
...,
|
||||
"--mus_dir",
|
||||
exists=True,
|
||||
dir_okay=True,
|
||||
file_okay=False,
|
||||
readable=True,
|
||||
resolve_path=True,
|
||||
help="Path to musDB dataset directory",
|
||||
)
|
||||
|
||||
TrainingDataDirectoryOption: OptionInfo = Option(
|
||||
...,
|
||||
"--data",
|
||||
"-d",
|
||||
exists=True,
|
||||
dir_okay=True,
|
||||
file_okay=False,
|
||||
readable=True,
|
||||
resolve_path=True,
|
||||
help="Path of the folder containing audio data for training",
|
||||
)
|
||||
|
||||
VerboseOption: OptionInfo = Option(False, "--verbose", help="Enable verbose logs")
|
||||
0
spleeter/py.typed
Normal file
0
spleeter/py.typed
Normal file
@@ -3,6 +3,6 @@
|
||||
|
||||
""" Packages that provides static resources file for the library. """
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
@@ -4,60 +4,63 @@
|
||||
"""
|
||||
Module that provides a class wrapper for source separation.
|
||||
|
||||
:Example:
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> from spleeter.separator import Separator
|
||||
>>> separator = Separator('spleeter:2stems')
|
||||
>>> separator.separate(waveform, lambda instrument, data: ...)
|
||||
>>> separator.separate_to_file(...)
|
||||
```
|
||||
"""
|
||||
|
||||
import atexit
|
||||
import os
|
||||
import logging
|
||||
|
||||
from multiprocessing import Pool
|
||||
from os.path import basename, join, splitext, dirname
|
||||
from time import time
|
||||
from typing import Container, NoReturn
|
||||
from os.path import basename, dirname, join, splitext
|
||||
from typing import Dict, Generator, Optional
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from librosa.core import stft, istft
|
||||
from librosa.core import istft, stft
|
||||
from scipy.signal.windows import hann
|
||||
|
||||
from spleeter.model.provider import ModelProvider
|
||||
|
||||
from . import SpleeterError
|
||||
from .audio.adapter import get_default_audio_adapter
|
||||
from .audio import Codec, STFTBackend
|
||||
from .audio.adapter import AudioAdapter
|
||||
from .audio.convertor import to_stereo
|
||||
from .model import EstimatorSpecBuilder, InputProviderFactory, model_fn
|
||||
from .model.provider import ModelProvider
|
||||
from .types import AudioDescriptor
|
||||
from .utils.configuration import load_configuration
|
||||
from .utils.estimator import create_estimator, get_default_model_dir
|
||||
from .model import EstimatorSpecBuilder, InputProviderFactory
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
# pylint: enable=import-error
|
||||
|
||||
SUPPORTED_BACKEND: Container[str] = ('auto', 'tensorflow', 'librosa')
|
||||
""" """
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
class DataGenerator():
|
||||
class DataGenerator(object):
|
||||
"""
|
||||
Generator object that store a sample and generate it once while called.
|
||||
Used to feed a tensorflow estimator without knowing the whole data at
|
||||
build time.
|
||||
Generator object that store a sample and generate it once while called.
|
||||
Used to feed a tensorflow estimator without knowing the whole data at
|
||||
build time.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
""" Default constructor. """
|
||||
self._current_data = None
|
||||
|
||||
def update_data(self, data):
|
||||
def update_data(self, data) -> None:
|
||||
""" Replace internal data. """
|
||||
self._current_data = data
|
||||
|
||||
def __call__(self):
|
||||
def __call__(self) -> Generator:
|
||||
""" Generation process. """
|
||||
buffer = self._current_data
|
||||
while buffer:
|
||||
@@ -65,34 +68,52 @@ class DataGenerator():
|
||||
buffer = self._current_data
|
||||
|
||||
|
||||
def get_backend(backend: str) -> str:
|
||||
def create_estimator(params, MWF):
|
||||
"""
|
||||
Initialize tensorflow estimator that will perform separation
|
||||
|
||||
Params:
|
||||
- params: a dictionary of parameters for building the model
|
||||
|
||||
Returns:
|
||||
a tensorflow estimator
|
||||
"""
|
||||
if backend not in SUPPORTED_BACKEND:
|
||||
raise ValueError(f'Unsupported backend {backend}')
|
||||
if backend == 'auto':
|
||||
if len(tf.config.list_physical_devices('GPU')):
|
||||
return 'tensorflow'
|
||||
return 'librosa'
|
||||
return backend
|
||||
# Load model.
|
||||
provider: ModelProvider = ModelProvider.default()
|
||||
params["model_dir"] = provider.get(params["model_dir"])
|
||||
params["MWF"] = MWF
|
||||
# Setup config
|
||||
session_config = tf.compat.v1.ConfigProto()
|
||||
session_config.gpu_options.per_process_gpu_memory_fraction = 0.7
|
||||
config = tf.estimator.RunConfig(session_config=session_config)
|
||||
# Setup estimator
|
||||
estimator = tf.estimator.Estimator(
|
||||
model_fn=model_fn, model_dir=params["model_dir"], params=params, config=config
|
||||
)
|
||||
return estimator
|
||||
|
||||
|
||||
class Separator(object):
|
||||
""" A wrapper class for performing separation. """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params_descriptor,
|
||||
MWF: bool = False,
|
||||
stft_backend: str = 'auto',
|
||||
multiprocess: bool = True):
|
||||
""" Default constructor.
|
||||
self,
|
||||
params_descriptor: str,
|
||||
MWF: bool = False,
|
||||
stft_backend: STFTBackend = STFTBackend.AUTO,
|
||||
multiprocess: bool = True,
|
||||
) -> None:
|
||||
"""
|
||||
Default constructor.
|
||||
|
||||
:param params_descriptor: Descriptor for TF params to be used.
|
||||
:param MWF: (Optional) True if MWF should be used, False otherwise.
|
||||
Parameters:
|
||||
params_descriptor (str):
|
||||
Descriptor for TF params to be used.
|
||||
MWF (bool):
|
||||
(Optional) `True` if MWF should be used, `False` otherwise.
|
||||
"""
|
||||
self._params = load_configuration(params_descriptor)
|
||||
self._sample_rate = self._params['sample_rate']
|
||||
self._sample_rate = self._params["sample_rate"]
|
||||
self._MWF = MWF
|
||||
self._tf_graph = tf.Graph()
|
||||
self._prediction_generator = None
|
||||
@@ -106,19 +127,21 @@ class Separator(object):
|
||||
else:
|
||||
self._pool = None
|
||||
self._tasks = []
|
||||
self._params['stft_backend'] = get_backend(stft_backend)
|
||||
self._params["stft_backend"] = STFTBackend.resolve(stft_backend)
|
||||
self._data_generator = DataGenerator()
|
||||
|
||||
def __del__(self):
|
||||
""" """
|
||||
def __del__(self) -> None:
|
||||
if self._session:
|
||||
self._session.close()
|
||||
|
||||
def _get_prediction_generator(self):
|
||||
""" Lazy loading access method for internal prediction generator
|
||||
def _get_prediction_generator(self) -> Generator:
|
||||
"""
|
||||
Lazy loading access method for internal prediction generator
|
||||
returned by the predict method of a tensorflow estimator.
|
||||
|
||||
:returns: generator of prediction.
|
||||
Returns:
|
||||
Generator:
|
||||
Generator of prediction.
|
||||
"""
|
||||
if self._prediction_generator is None:
|
||||
estimator = create_estimator(self._params, self._MWF)
|
||||
@@ -126,82 +149,74 @@ class Separator(object):
|
||||
def get_dataset():
|
||||
return tf.data.Dataset.from_generator(
|
||||
self._data_generator,
|
||||
output_types={
|
||||
'waveform': tf.float32,
|
||||
'audio_id': tf.string},
|
||||
output_shapes={
|
||||
'waveform': (None, 2),
|
||||
'audio_id': ()})
|
||||
output_types={"waveform": tf.float32, "audio_id": tf.string},
|
||||
output_shapes={"waveform": (None, 2), "audio_id": ()},
|
||||
)
|
||||
|
||||
self._prediction_generator = estimator.predict(
|
||||
get_dataset,
|
||||
yield_single_examples=False)
|
||||
get_dataset, yield_single_examples=False
|
||||
)
|
||||
return self._prediction_generator
|
||||
|
||||
def join(self, timeout: int = 200) -> NoReturn:
|
||||
""" Wait for all pending tasks to be finished.
|
||||
def join(self, timeout: int = 200) -> None:
|
||||
"""
|
||||
Wait for all pending tasks to be finished.
|
||||
|
||||
:param timeout: (Optional) task waiting timeout.
|
||||
Parameters:
|
||||
timeout (int):
|
||||
(Optional) task waiting timeout.
|
||||
"""
|
||||
while len(self._tasks) > 0:
|
||||
task = self._tasks.pop()
|
||||
task.get()
|
||||
task.wait(timeout=timeout)
|
||||
|
||||
def _separate_tensorflow(self, waveform: np.ndarray, audio_descriptor):
|
||||
""" Performs source separation over the given waveform with tensorflow
|
||||
backend.
|
||||
|
||||
:param waveform: Waveform to apply separation on.
|
||||
:returns: Separated waveforms.
|
||||
def _stft(
|
||||
self, data: np.ndarray, inverse: bool = False, length: Optional[int] = None
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
if not waveform.shape[-1] == 2:
|
||||
waveform = to_stereo(waveform)
|
||||
prediction_generator = self._get_prediction_generator()
|
||||
# NOTE: update data in generator before performing separation.
|
||||
self._data_generator.update_data({
|
||||
'waveform': waveform,
|
||||
'audio_id': np.array(audio_descriptor)})
|
||||
# NOTE: perform separation.
|
||||
prediction = next(prediction_generator)
|
||||
prediction.pop('audio_id')
|
||||
return prediction
|
||||
|
||||
def _stft(self, data, inverse: bool = False, length=None):
|
||||
""" Single entrypoint for both stft and istft. This computes stft and
|
||||
Single entrypoint for both stft and istft. This computes stft and
|
||||
istft with librosa on stereo data. The two channels are processed
|
||||
separately and are concatenated together in the result. The expected
|
||||
input formats are: (n_samples, 2) for stft and (T, F, 2) for istft.
|
||||
separately and are concatenated together in the result. The
|
||||
expected input formats are: (n_samples, 2) for stft and (T, F, 2)
|
||||
for istft.
|
||||
|
||||
:param data: np.array with either the waveform or the complex
|
||||
spectrogram depending on the parameter inverse
|
||||
:param inverse: should a stft or an istft be computed.
|
||||
:returns: Stereo data as numpy array for the transform.
|
||||
The channels are stored in the last dimension.
|
||||
Parameters:
|
||||
data (numpy.array):
|
||||
Array with either the waveform or the complex spectrogram
|
||||
depending on the parameter inverse
|
||||
inverse (bool):
|
||||
(Optional) Should a stft or an istft be computed.
|
||||
length (Optional[int]):
|
||||
|
||||
Returns:
|
||||
numpy.ndarray:
|
||||
Stereo data as numpy array for the transform. The channels
|
||||
are stored in the last dimension.
|
||||
"""
|
||||
assert not (inverse and length is None)
|
||||
data = np.asfortranarray(data)
|
||||
N = self._params['frame_length']
|
||||
H = self._params['frame_step']
|
||||
N = self._params["frame_length"]
|
||||
H = self._params["frame_step"]
|
||||
win = hann(N, sym=False)
|
||||
fstft = istft if inverse else stft
|
||||
win_len_arg = {
|
||||
'win_length': None,
|
||||
'length': None} if inverse else {'n_fft': N}
|
||||
win_len_arg = {"win_length": None, "length": None} if inverse else {"n_fft": N}
|
||||
n_channels = data.shape[-1]
|
||||
out = []
|
||||
for c in range(n_channels):
|
||||
d = np.concatenate(
|
||||
(np.zeros((N, )), data[:, c], np.zeros((N, )))
|
||||
) if not inverse else data[:, :, c].T
|
||||
d = (
|
||||
np.concatenate((np.zeros((N,)), data[:, c], np.zeros((N,))))
|
||||
if not inverse
|
||||
else data[:, :, c].T
|
||||
)
|
||||
s = fstft(d, hop_length=H, window=win, center=False, **win_len_arg)
|
||||
if inverse:
|
||||
s = s[N:N+length]
|
||||
s = np.expand_dims(s.T, 2-inverse)
|
||||
s = s[N : N + length]
|
||||
s = np.expand_dims(s.T, 2 - inverse)
|
||||
out.append(s)
|
||||
if len(out) == 1:
|
||||
return out[0]
|
||||
return np.concatenate(out, axis=2-inverse)
|
||||
return np.concatenate(out, axis=2 - inverse)
|
||||
|
||||
def _get_input_provider(self):
|
||||
if self._input_provider is None:
|
||||
@@ -216,22 +231,29 @@ class Separator(object):
|
||||
|
||||
def _get_builder(self):
|
||||
if self._builder is None:
|
||||
self._builder = EstimatorSpecBuilder(
|
||||
self._get_features(),
|
||||
self._params)
|
||||
self._builder = EstimatorSpecBuilder(self._get_features(), self._params)
|
||||
return self._builder
|
||||
|
||||
def _get_session(self):
|
||||
if self._session is None:
|
||||
saver = tf.compat.v1.train.Saver()
|
||||
latest_checkpoint = tf.train.latest_checkpoint(
|
||||
get_default_model_dir(self._params['model_dir']))
|
||||
provider = ModelProvider.default()
|
||||
model_directory: str = provider.get(self._params["model_dir"])
|
||||
latest_checkpoint = tf.train.latest_checkpoint(model_directory)
|
||||
self._session = tf.compat.v1.Session()
|
||||
saver.restore(self._session, latest_checkpoint)
|
||||
return self._session
|
||||
|
||||
def _separate_librosa(self, waveform: np.ndarray, audio_id):
|
||||
""" Performs separation with librosa backend for STFT.
|
||||
def _separate_librosa(
|
||||
self, waveform: np.ndarray, audio_descriptor: AudioDescriptor
|
||||
) -> Dict:
|
||||
"""
|
||||
Performs separation with librosa backend for STFT.
|
||||
|
||||
Parameters:
|
||||
waveform (numpy.ndarray):
|
||||
Waveform to be separated (as a numpy array)
|
||||
audio_descriptor (AudioDescriptor):
|
||||
"""
|
||||
with self._tf_graph.as_default():
|
||||
out = {}
|
||||
@@ -248,65 +270,115 @@ class Separator(object):
|
||||
outputs = sess.run(
|
||||
outputs,
|
||||
feed_dict=self._get_input_provider().get_feed_dict(
|
||||
features,
|
||||
stft,
|
||||
audio_id))
|
||||
features, stft, audio_descriptor
|
||||
),
|
||||
)
|
||||
for inst in self._get_builder().instruments:
|
||||
out[inst] = self._stft(
|
||||
outputs[inst],
|
||||
inverse=True,
|
||||
length=waveform.shape[0])
|
||||
outputs[inst], inverse=True, length=waveform.shape[0]
|
||||
)
|
||||
return out
|
||||
|
||||
def separate(self, waveform: np.ndarray, audio_descriptor=''):
|
||||
""" Performs separation on a waveform.
|
||||
|
||||
:param waveform: Waveform to be separated (as a numpy array)
|
||||
:param audio_descriptor: (Optional) string describing the waveform
|
||||
(e.g. filename).
|
||||
def _separate_tensorflow(
|
||||
self, waveform: np.ndarray, audio_descriptor: AudioDescriptor
|
||||
) -> Dict:
|
||||
"""
|
||||
if self._params['stft_backend'] == 'tensorflow':
|
||||
Performs source separation over the given waveform with tensorflow
|
||||
backend.
|
||||
|
||||
Parameters:
|
||||
waveform (numpy.ndarray):
|
||||
Waveform to be separated (as a numpy array)
|
||||
audio_descriptor (AudioDescriptor):
|
||||
|
||||
Returns:
|
||||
Separated waveforms.
|
||||
"""
|
||||
if not waveform.shape[-1] == 2:
|
||||
waveform = to_stereo(waveform)
|
||||
prediction_generator = self._get_prediction_generator()
|
||||
# NOTE: update data in generator before performing separation.
|
||||
self._data_generator.update_data(
|
||||
{"waveform": waveform, "audio_id": np.array(audio_descriptor)}
|
||||
)
|
||||
# NOTE: perform separation.
|
||||
prediction = next(prediction_generator)
|
||||
prediction.pop("audio_id")
|
||||
return prediction
|
||||
|
||||
def separate(
|
||||
self, waveform: np.ndarray, audio_descriptor: Optional[str] = None
|
||||
) -> None:
|
||||
"""
|
||||
Performs separation on a waveform.
|
||||
|
||||
Parameters:
|
||||
waveform (numpy.ndarray):
|
||||
Waveform to be separated (as a numpy array)
|
||||
audio_descriptor (str):
|
||||
(Optional) string describing the waveform (e.g. filename).
|
||||
"""
|
||||
backend: str = self._params["stft_backend"]
|
||||
if backend == STFTBackend.TENSORFLOW:
|
||||
return self._separate_tensorflow(waveform, audio_descriptor)
|
||||
else:
|
||||
elif backend == STFTBackend.LIBROSA:
|
||||
return self._separate_librosa(waveform, audio_descriptor)
|
||||
raise ValueError(f"Unsupported STFT backend {backend}")
|
||||
|
||||
def separate_to_file(
|
||||
self,
|
||||
audio_descriptor,
|
||||
destination,
|
||||
audio_adapter=get_default_audio_adapter(),
|
||||
offset=0,
|
||||
duration=600.,
|
||||
codec='wav',
|
||||
bitrate='128k',
|
||||
filename_format='{filename}/{instrument}.{codec}',
|
||||
synchronous=True):
|
||||
""" Performs source separation and export result to file using
|
||||
self,
|
||||
audio_descriptor: AudioDescriptor,
|
||||
destination: str,
|
||||
audio_adapter: Optional[AudioAdapter] = None,
|
||||
offset: int = 0,
|
||||
duration: float = 600.0,
|
||||
codec: Codec = Codec.WAV,
|
||||
bitrate: str = "128k",
|
||||
filename_format: str = "{filename}/{instrument}.{codec}",
|
||||
synchronous: bool = True,
|
||||
) -> None:
|
||||
"""
|
||||
Performs source separation and export result to file using
|
||||
given audio adapter.
|
||||
|
||||
Filename format should be a Python formattable string that could use
|
||||
following parameters : {instrument}, {filename}, {foldername} and
|
||||
{codec}.
|
||||
Filename format should be a Python formattable string that could
|
||||
use following parameters :
|
||||
|
||||
:param audio_descriptor: Describe song to separate, used by audio
|
||||
adapter to retrieve and load audio data,
|
||||
in case of file based audio adapter, such
|
||||
descriptor would be a file path.
|
||||
:param destination: Target directory to write output to.
|
||||
:param audio_adapter: (Optional) Audio adapter to use for I/O.
|
||||
:param offset: (Optional) Offset of loaded song.
|
||||
:param duration: (Optional) Duration of loaded song
|
||||
(default: 600s).
|
||||
:param codec: (Optional) Export codec.
|
||||
:param bitrate: (Optional) Export bitrate.
|
||||
:param filename_format: (Optional) Filename format.
|
||||
:param synchronous: (Optional) True is should by synchronous.
|
||||
- {instrument}
|
||||
- {filename}
|
||||
- {foldername}
|
||||
- {codec}.
|
||||
|
||||
Parameters:
|
||||
audio_descriptor (AudioDescriptor):
|
||||
Describe song to separate, used by audio adapter to
|
||||
retrieve and load audio data, in case of file based
|
||||
audio adapter, such descriptor would be a file path.
|
||||
destination (str):
|
||||
Target directory to write output to.
|
||||
audio_adapter (Optional[AudioAdapter]):
|
||||
(Optional) Audio adapter to use for I/O.
|
||||
offset (int):
|
||||
(Optional) Offset of loaded song.
|
||||
duration (float):
|
||||
(Optional) Duration of loaded song (default: 600s).
|
||||
codec (Codec):
|
||||
(Optional) Export codec.
|
||||
bitrate (str):
|
||||
(Optional) Export bitrate.
|
||||
filename_format (str):
|
||||
(Optional) Filename format.
|
||||
synchronous (bool):
|
||||
(Optional) True is should by synchronous.
|
||||
"""
|
||||
waveform, sample_rate = audio_adapter.load(
|
||||
if audio_adapter is None:
|
||||
audio_adapter = AudioAdapter.default()
|
||||
waveform, _ = audio_adapter.load(
|
||||
audio_descriptor,
|
||||
offset=offset,
|
||||
duration=duration,
|
||||
sample_rate=self._sample_rate)
|
||||
sample_rate=self._sample_rate,
|
||||
)
|
||||
sources = self.separate(waveform, audio_descriptor)
|
||||
self.save_to_file(
|
||||
sources,
|
||||
@@ -316,69 +388,78 @@ class Separator(object):
|
||||
codec,
|
||||
audio_adapter,
|
||||
bitrate,
|
||||
synchronous)
|
||||
synchronous,
|
||||
)
|
||||
|
||||
def save_to_file(
|
||||
self,
|
||||
sources,
|
||||
audio_descriptor,
|
||||
destination,
|
||||
filename_format='{filename}/{instrument}.{codec}',
|
||||
codec='wav',
|
||||
audio_adapter=get_default_audio_adapter(),
|
||||
bitrate='128k',
|
||||
synchronous=True):
|
||||
""" Export dictionary of sources to files.
|
||||
|
||||
:param sources: Dictionary of sources to be exported. The
|
||||
keys are the name of the instruments, and
|
||||
the values are Nx2 numpy arrays containing
|
||||
the corresponding intrument waveform, as
|
||||
returned by the separate method
|
||||
:param audio_descriptor: Describe song to separate, used by audio
|
||||
adapter to retrieve and load audio data,
|
||||
in case of file based audio adapter, such
|
||||
descriptor would be a file path.
|
||||
:param destination: Target directory to write output to.
|
||||
:param filename_format: (Optional) Filename format.
|
||||
:param codec: (Optional) Export codec.
|
||||
:param audio_adapter: (Optional) Audio adapter to use for I/O.
|
||||
:param bitrate: (Optional) Export bitrate.
|
||||
:param synchronous: (Optional) True is should by synchronous.
|
||||
|
||||
self,
|
||||
sources: Dict,
|
||||
audio_descriptor: AudioDescriptor,
|
||||
destination: str,
|
||||
filename_format: str = "{filename}/{instrument}.{codec}",
|
||||
codec: Codec = Codec.WAV,
|
||||
audio_adapter: Optional[AudioAdapter] = None,
|
||||
bitrate: str = "128k",
|
||||
synchronous: bool = True,
|
||||
) -> None:
|
||||
"""
|
||||
Export dictionary of sources to files.
|
||||
|
||||
Parameters:
|
||||
sources (Dict):
|
||||
Dictionary of sources to be exported. The keys are the name
|
||||
of the instruments, and the values are `N x 2` numpy arrays
|
||||
containing the corresponding intrument waveform, as
|
||||
returned by the separate method
|
||||
audio_descriptor (AudioDescriptor):
|
||||
Describe song to separate, used by audio adapter to
|
||||
retrieve and load audio data, in case of file based audio
|
||||
adapter, such descriptor would be a file path.
|
||||
destination (str):
|
||||
Target directory to write output to.
|
||||
filename_format (str):
|
||||
(Optional) Filename format.
|
||||
codec (Codec):
|
||||
(Optional) Export codec.
|
||||
audio_adapter (Optional[AudioAdapter]):
|
||||
(Optional) Audio adapter to use for I/O.
|
||||
bitrate (str):
|
||||
(Optional) Export bitrate.
|
||||
synchronous (bool):
|
||||
(Optional) True is should by synchronous.
|
||||
"""
|
||||
if audio_adapter is None:
|
||||
audio_adapter = AudioAdapter.default()
|
||||
foldername = basename(dirname(audio_descriptor))
|
||||
filename = splitext(basename(audio_descriptor))[0]
|
||||
generated = []
|
||||
for instrument, data in sources.items():
|
||||
path = join(destination, filename_format.format(
|
||||
filename=filename,
|
||||
instrument=instrument,
|
||||
foldername=foldername,
|
||||
codec=codec,
|
||||
))
|
||||
path = join(
|
||||
destination,
|
||||
filename_format.format(
|
||||
filename=filename,
|
||||
instrument=instrument,
|
||||
foldername=foldername,
|
||||
codec=codec,
|
||||
),
|
||||
)
|
||||
directory = os.path.dirname(path)
|
||||
if not os.path.exists(directory):
|
||||
os.makedirs(directory)
|
||||
if path in generated:
|
||||
raise SpleeterError((
|
||||
f'Separated source path conflict : {path},'
|
||||
'please check your filename format'))
|
||||
raise SpleeterError(
|
||||
(
|
||||
f"Separated source path conflict : {path},"
|
||||
"please check your filename format"
|
||||
)
|
||||
)
|
||||
generated.append(path)
|
||||
if self._pool:
|
||||
task = self._pool.apply_async(audio_adapter.save, (
|
||||
path,
|
||||
data,
|
||||
self._sample_rate,
|
||||
codec,
|
||||
bitrate))
|
||||
task = self._pool.apply_async(
|
||||
audio_adapter.save, (path, data, self._sample_rate, codec, bitrate)
|
||||
)
|
||||
self._tasks.append(task)
|
||||
else:
|
||||
audio_adapter.save(
|
||||
path,
|
||||
data,
|
||||
self._sample_rate,
|
||||
codec,
|
||||
bitrate)
|
||||
audio_adapter.save(path, data, self._sample_rate, codec, bitrate)
|
||||
if synchronous and self._pool:
|
||||
self.join()
|
||||
|
||||
15
spleeter/types.py
Normal file
15
spleeter/types.py
Normal file
@@ -0,0 +1,15 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
""" Custom types definition. """
|
||||
|
||||
from typing import Any, Tuple
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import numpy as np
|
||||
|
||||
# pylint: enable=import-error
|
||||
|
||||
AudioDescriptor: type = Any
|
||||
Signal: type = Tuple[np.ndarray, float]
|
||||
@@ -3,6 +3,6 @@
|
||||
|
||||
""" This package provides utility function and classes. """
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
@@ -3,45 +3,49 @@
|
||||
|
||||
""" Module that provides configuration loading function. """
|
||||
|
||||
import importlib.resources as loader
|
||||
import json
|
||||
|
||||
try:
|
||||
import importlib.resources as loader
|
||||
except ImportError:
|
||||
# Try backported to PY<37 `importlib_resources`.
|
||||
import importlib_resources as loader
|
||||
|
||||
from os.path import exists
|
||||
from typing import Dict
|
||||
|
||||
from .. import resources, SpleeterError
|
||||
from .. import SpleeterError, resources
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
_EMBEDDED_CONFIGURATION_PREFIX: str = "spleeter:"
|
||||
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
def load_configuration(descriptor: str) -> Dict:
|
||||
"""
|
||||
Load configuration from the given descriptor. Could be either a
|
||||
`spleeter:` prefixed embedded configuration name or a file system path
|
||||
to read configuration from.
|
||||
|
||||
_EMBEDDED_CONFIGURATION_PREFIX = 'spleeter:'
|
||||
Parameters:
|
||||
descriptor (str):
|
||||
Configuration descriptor to use for lookup.
|
||||
|
||||
Returns:
|
||||
Dict:
|
||||
Loaded description as dict.
|
||||
|
||||
def load_configuration(descriptor):
|
||||
""" Load configuration from the given descriptor. Could be
|
||||
either a `spleeter:` prefixed embedded configuration name
|
||||
or a file system path to read configuration from.
|
||||
|
||||
:param descriptor: Configuration descriptor to use for lookup.
|
||||
:returns: Loaded description as dict.
|
||||
:raise ValueError: If required embedded configuration does not exists.
|
||||
:raise SpleeterError: If required configuration file does not exists.
|
||||
Raises:
|
||||
ValueError:
|
||||
If required embedded configuration does not exists.
|
||||
SpleeterError:
|
||||
If required configuration file does not exists.
|
||||
"""
|
||||
# Embedded configuration reading.
|
||||
if descriptor.startswith(_EMBEDDED_CONFIGURATION_PREFIX):
|
||||
name = descriptor[len(_EMBEDDED_CONFIGURATION_PREFIX):]
|
||||
if not loader.is_resource(resources, f'{name}.json'):
|
||||
raise SpleeterError(f'No embedded configuration {name} found')
|
||||
with loader.open_text(resources, f'{name}.json') as stream:
|
||||
name = descriptor[len(_EMBEDDED_CONFIGURATION_PREFIX) :]
|
||||
if not loader.is_resource(resources, f"{name}.json"):
|
||||
raise SpleeterError(f"No embedded configuration {name} found")
|
||||
with loader.open_text(resources, f"{name}.json") as stream:
|
||||
return json.load(stream)
|
||||
# Standard file reading.
|
||||
if not exists(descriptor):
|
||||
raise SpleeterError(f'Configuration file {descriptor} not found')
|
||||
with open(descriptor, 'r') as stream:
|
||||
raise SpleeterError(f"Configuration file {descriptor} not found")
|
||||
with open(descriptor, "r") as stream:
|
||||
return json.load(stream)
|
||||
|
||||
@@ -1,46 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
""" Utility functions for creating estimator. """
|
||||
|
||||
import tensorflow as tf # pylint: disable=import-error
|
||||
|
||||
from ..model import model_fn
|
||||
from ..model.provider import get_default_model_provider
|
||||
|
||||
|
||||
def get_default_model_dir(model_dir):
|
||||
"""
|
||||
Transforms a string like 'spleeter:2stems' into an actual path.
|
||||
:param model_dir:
|
||||
:return:
|
||||
"""
|
||||
model_provider = get_default_model_provider()
|
||||
return model_provider.get(model_dir)
|
||||
|
||||
|
||||
def create_estimator(params, MWF):
|
||||
"""
|
||||
Initialize tensorflow estimator that will perform separation
|
||||
|
||||
Params:
|
||||
- params: a dictionary of parameters for building the model
|
||||
|
||||
Returns:
|
||||
a tensorflow estimator
|
||||
"""
|
||||
# Load model.
|
||||
params['model_dir'] = get_default_model_dir(params['model_dir'])
|
||||
params['MWF'] = MWF
|
||||
# Setup config
|
||||
session_config = tf.compat.v1.ConfigProto()
|
||||
session_config.gpu_options.per_process_gpu_memory_fraction = 0.7
|
||||
config = tf.estimator.RunConfig(session_config=session_config)
|
||||
# Setup estimator
|
||||
estimator = tf.estimator.Estimator(
|
||||
model_fn=model_fn,
|
||||
model_dir=params['model_dir'],
|
||||
params=params,
|
||||
config=config
|
||||
)
|
||||
return estimator
|
||||
@@ -4,58 +4,53 @@
|
||||
""" Centralized logging facilities for Spleeter. """
|
||||
|
||||
import logging
|
||||
|
||||
import warnings
|
||||
from os import environ
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
from typer import echo
|
||||
|
||||
_FORMAT = '%(levelname)s:%(name)s:%(message)s'
|
||||
# pylint: enable=import-error
|
||||
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
|
||||
|
||||
class _LoggerHolder(object):
|
||||
""" Logger singleton instance holder. """
|
||||
class TyperLoggerHandler(logging.Handler):
|
||||
""" A custom logger handler that use Typer echo. """
|
||||
|
||||
INSTANCE = None
|
||||
def emit(self, record: logging.LogRecord) -> None:
|
||||
echo(self.format(record))
|
||||
|
||||
|
||||
def get_tensorflow_logger():
|
||||
formatter = logging.Formatter("%(levelname)s:%(name)s:%(message)s")
|
||||
handler = TyperLoggerHandler()
|
||||
handler.setFormatter(formatter)
|
||||
logger: logging.Logger = logging.getLogger("spleeter")
|
||||
logger.addHandler(handler)
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
|
||||
def configure_logger(verbose: bool) -> None:
|
||||
"""
|
||||
Configure application logger.
|
||||
|
||||
Parameters:
|
||||
verbose (bool):
|
||||
`True` to use verbose logger, `False` otherwise.
|
||||
"""
|
||||
# pylint: disable=import-error
|
||||
from tensorflow.compat.v1 import logging
|
||||
# pylint: enable=import-error
|
||||
return logging
|
||||
from tensorflow import get_logger
|
||||
from tensorflow.compat.v1 import logging as tf_logging
|
||||
|
||||
|
||||
def get_logger():
|
||||
""" Returns library scoped logger.
|
||||
|
||||
:returns: Library logger.
|
||||
"""
|
||||
if _LoggerHolder.INSTANCE is None:
|
||||
formatter = logging.Formatter(_FORMAT)
|
||||
handler = logging.StreamHandler()
|
||||
handler.setFormatter(formatter)
|
||||
logger = logging.getLogger('spleeter')
|
||||
logger.addHandler(handler)
|
||||
logger.setLevel(logging.INFO)
|
||||
_LoggerHolder.INSTANCE = logger
|
||||
return _LoggerHolder.INSTANCE
|
||||
|
||||
|
||||
def enable_tensorflow_logging():
|
||||
""" Enable tensorflow logging. """
|
||||
environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
|
||||
tf_logger = get_tensorflow_logger()
|
||||
tf_logger.set_verbosity(tf_logger.INFO)
|
||||
logger = get_logger()
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
|
||||
def enable_logging():
|
||||
""" Configure default logging. """
|
||||
environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
tf_logger = get_tensorflow_logger()
|
||||
tf_logger.set_verbosity(tf_logger.ERROR)
|
||||
tf_logger = get_logger()
|
||||
tf_logger.handlers = [handler]
|
||||
if verbose:
|
||||
tf_logging.set_verbosity(tf_logging.INFO)
|
||||
logger.setLevel(logging.DEBUG)
|
||||
else:
|
||||
warnings.filterwarnings("ignore")
|
||||
tf_logging.set_verbosity(tf_logging.ERROR)
|
||||
|
||||
@@ -3,43 +3,54 @@
|
||||
|
||||
""" Utility function for tensorflow. """
|
||||
|
||||
from typing import Any, Callable, Dict
|
||||
|
||||
import pandas as pd
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import tensorflow as tf
|
||||
import pandas as pd
|
||||
|
||||
# pylint: enable=import-error
|
||||
|
||||
__email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
__email__ = "spleeter@deezer.com"
|
||||
__author__ = "Deezer Research"
|
||||
__license__ = "MIT License"
|
||||
|
||||
|
||||
def sync_apply(tensor_dict, func, concat_axis=1):
|
||||
""" Return a function that applies synchronously the provided func on the
|
||||
def sync_apply(
|
||||
tensor_dict: tf.Tensor, func: Callable, concat_axis: int = 1
|
||||
) -> Dict[str, tf.Tensor]:
|
||||
"""
|
||||
Return a function that applies synchronously the provided func on the
|
||||
provided dictionnary of tensor. This means that func is applied to the
|
||||
concatenation of the tensors in tensor_dict. This is useful for performing
|
||||
random operation that needs the same drawn value on multiple tensor, such
|
||||
as a random time-crop on both input data and label (the same crop should be
|
||||
applied to both input data and label, so random crop cannot be applied
|
||||
separately on each of them).
|
||||
concatenation of the tensors in tensor_dict. This is useful for
|
||||
performing random operation that needs the same drawn value on multiple
|
||||
tensor, such as a random time-crop on both input data and label (the
|
||||
same crop should be applied to both input data and label, so random
|
||||
crop cannot be applied separately on each of them).
|
||||
|
||||
IMPORTANT NOTE: all tensor are assumed to be the same shape.
|
||||
Notes:
|
||||
All tensor are assumed to be the same shape.
|
||||
|
||||
Params:
|
||||
- tensor_dict: dictionary (key: strings, values: tf.tensor)
|
||||
a dictionary of tensor.
|
||||
- func: function
|
||||
function to be applied to the concatenation of the tensors in
|
||||
tensor_dict
|
||||
- concat_axis: int
|
||||
The axis on which to perform the concatenation.
|
||||
Parameters:
|
||||
tensor_dict (Dict[str, tensorflow.Tensor]):
|
||||
A dictionary of tensor.
|
||||
func (Callable):
|
||||
Function to be applied to the concatenation of the tensors in
|
||||
`tensor_dict`.
|
||||
concat_axis (int):
|
||||
The axis on which to perform the concatenation.
|
||||
|
||||
Returns:
|
||||
processed tensors dictionary with the same name (keys) as input
|
||||
tensor_dict.
|
||||
Returns:
|
||||
Dict[str, tensorflow.Tensor]:
|
||||
Processed tensors dictionary with the same name (keys) as input
|
||||
tensor_dict.
|
||||
"""
|
||||
if concat_axis not in {0, 1}:
|
||||
raise NotImplementedError(
|
||||
'Function only implemented for concat_axis equal to 0 or 1')
|
||||
"Function only implemented for concat_axis equal to 0 or 1"
|
||||
)
|
||||
tensor_list = list(tensor_dict.values())
|
||||
concat_tensor = tf.concat(tensor_list, concat_axis)
|
||||
processed_concat_tensor = func(concat_tensor)
|
||||
@@ -47,90 +58,104 @@ def sync_apply(tensor_dict, func, concat_axis=1):
|
||||
D = tensor_shape[concat_axis]
|
||||
if concat_axis == 0:
|
||||
return {
|
||||
name: processed_concat_tensor[index * D:(index + 1) * D, :, :]
|
||||
name: processed_concat_tensor[index * D : (index + 1) * D, :, :]
|
||||
for index, name in enumerate(tensor_dict)
|
||||
}
|
||||
return {
|
||||
name: processed_concat_tensor[:, index * D:(index + 1) * D, :]
|
||||
name: processed_concat_tensor[:, index * D : (index + 1) * D, :]
|
||||
for index, name in enumerate(tensor_dict)
|
||||
}
|
||||
|
||||
|
||||
def from_float32_to_uint8(
|
||||
tensor,
|
||||
tensor_key='tensor',
|
||||
min_key='min',
|
||||
max_key='max'):
|
||||
tensor: tf.Tensor,
|
||||
tensor_key: str = "tensor",
|
||||
min_key: str = "min",
|
||||
max_key: str = "max",
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
|
||||
:param tensor:
|
||||
:param tensor_key:
|
||||
:param min_key:
|
||||
:param max_key:
|
||||
:returns:
|
||||
Parameters:
|
||||
tensor (tensorflow.Tensor):
|
||||
tensor_key (str):
|
||||
min_key (str):
|
||||
max_key (str):
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
"""
|
||||
tensor_min = tf.reduce_min(tensor)
|
||||
tensor_max = tf.reduce_max(tensor)
|
||||
return {
|
||||
tensor_key: tf.cast(
|
||||
(tensor - tensor_min) / (tensor_max - tensor_min + 1e-16)
|
||||
* 255.9999, dtype=tf.uint8),
|
||||
(tensor - tensor_min) / (tensor_max - tensor_min + 1e-16) * 255.9999,
|
||||
dtype=tf.uint8,
|
||||
),
|
||||
min_key: tensor_min,
|
||||
max_key: tensor_max
|
||||
max_key: tensor_max,
|
||||
}
|
||||
|
||||
|
||||
def from_uint8_to_float32(tensor, tensor_min, tensor_max):
|
||||
def from_uint8_to_float32(
|
||||
tensor: tf.Tensor, tensor_min: tf.Tensor, tensor_max: tf.Tensor
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
|
||||
:param tensor:
|
||||
:param tensor_min:
|
||||
:param tensor_max:
|
||||
:returns:
|
||||
Parameters:
|
||||
tensor (tensorflow.Tensor):
|
||||
tensor_min (tensorflow.Tensor):
|
||||
tensor_max (tensorflow.Tensor):
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
"""
|
||||
return (
|
||||
tf.cast(tensor, tf.float32)
|
||||
* (tensor_max - tensor_min)
|
||||
/ 255.9999 + tensor_min)
|
||||
tf.cast(tensor, tf.float32) * (tensor_max - tensor_min) / 255.9999 + tensor_min
|
||||
)
|
||||
|
||||
|
||||
def pad_and_partition(tensor, segment_len):
|
||||
""" Pad and partition a tensor into segment of len segment_len
|
||||
def pad_and_partition(tensor: tf.Tensor, segment_len: int) -> tf.Tensor:
|
||||
"""
|
||||
Pad and partition a tensor into segment of len `segment_len`
|
||||
along the first dimension. The tensor is padded with 0 in order
|
||||
to ensure that the first dimension is a multiple of segment_len.
|
||||
to ensure that the first dimension is a multiple of `segment_len`.
|
||||
|
||||
Tensor must be of known fixed rank
|
||||
|
||||
:Example:
|
||||
Examples:
|
||||
|
||||
>>> tensor = [[1, 2, 3], [4, 5, 6]]
|
||||
>>> segment_len = 2
|
||||
>>> pad_and_partition(tensor, segment_len)
|
||||
[[[1, 2], [4, 5]], [[3, 0], [6, 0]]]
|
||||
```python
|
||||
>>> tensor = [[1, 2, 3], [4, 5, 6]]
|
||||
>>> segment_len = 2
|
||||
>>> pad_and_partition(tensor, segment_len)
|
||||
[[[1, 2], [4, 5]], [[3, 0], [6, 0]]]
|
||||
````
|
||||
|
||||
:param tensor:
|
||||
:param segment_len:
|
||||
:returns:
|
||||
Parameters:
|
||||
tensor (tensorflow.Tensor):
|
||||
segment_len (int):
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
"""
|
||||
tensor_size = tf.math.floormod(tf.shape(tensor)[0], segment_len)
|
||||
pad_size = tf.math.floormod(segment_len - tensor_size, segment_len)
|
||||
padded = tf.pad(
|
||||
tensor,
|
||||
[[0, pad_size]] + [[0, 0]] * (len(tensor.shape)-1))
|
||||
padded = tf.pad(tensor, [[0, pad_size]] + [[0, 0]] * (len(tensor.shape) - 1))
|
||||
split = (tf.shape(padded)[0] + segment_len - 1) // segment_len
|
||||
return tf.reshape(
|
||||
padded,
|
||||
tf.concat(
|
||||
[[split, segment_len], tf.shape(padded)[1:]],
|
||||
axis=0))
|
||||
padded, tf.concat([[split, segment_len], tf.shape(padded)[1:]], axis=0)
|
||||
)
|
||||
|
||||
|
||||
def pad_and_reshape(instr_spec, frame_length, F):
|
||||
def pad_and_reshape(instr_spec, frame_length, F) -> Any:
|
||||
"""
|
||||
:param instr_spec:
|
||||
:param frame_length:
|
||||
:param F:
|
||||
:returns:
|
||||
Parameters:
|
||||
instr_spec:
|
||||
frame_length:
|
||||
F:
|
||||
|
||||
Returns:
|
||||
Any:
|
||||
"""
|
||||
spec_shape = tf.shape(instr_spec)
|
||||
extension_row = tf.zeros((spec_shape[0], spec_shape[1], 1, spec_shape[-1]))
|
||||
@@ -138,53 +163,67 @@ def pad_and_reshape(instr_spec, frame_length, F):
|
||||
extension = tf.tile(extension_row, [1, 1, n_extra_row, 1])
|
||||
extended_spec = tf.concat([instr_spec, extension], axis=2)
|
||||
old_shape = tf.shape(extended_spec)
|
||||
new_shape = tf.concat([
|
||||
[old_shape[0] * old_shape[1]],
|
||||
old_shape[2:]],
|
||||
axis=0)
|
||||
new_shape = tf.concat([[old_shape[0] * old_shape[1]], old_shape[2:]], axis=0)
|
||||
processed_instr_spec = tf.reshape(extended_spec, new_shape)
|
||||
return processed_instr_spec
|
||||
|
||||
|
||||
def dataset_from_csv(csv_path, **kwargs):
|
||||
""" Load dataset from a CSV file using Pandas. kwargs if any are
|
||||
def dataset_from_csv(csv_path: str, **kwargs) -> Any:
|
||||
"""
|
||||
Load dataset from a CSV file using Pandas. kwargs if any are
|
||||
forwarded to the `pandas.read_csv` function.
|
||||
|
||||
:param csv_path: Path of the CSV file to load dataset from.
|
||||
:returns: Loaded dataset.
|
||||
Parameters:
|
||||
csv_path (str):
|
||||
Path of the CSV file to load dataset from.
|
||||
|
||||
Returns:
|
||||
Any:
|
||||
Loaded dataset.
|
||||
"""
|
||||
df = pd.read_csv(csv_path, **kwargs)
|
||||
dataset = (
|
||||
tf.data.Dataset.from_tensor_slices(
|
||||
{key: df[key].values for key in df})
|
||||
)
|
||||
dataset = tf.data.Dataset.from_tensor_slices({key: df[key].values for key in df})
|
||||
return dataset
|
||||
|
||||
|
||||
def check_tensor_shape(tensor_tf, target_shape):
|
||||
""" Return a Tensorflow boolean graph that indicates whether
|
||||
def check_tensor_shape(tensor_tf: tf.Tensor, target_shape: Any) -> bool:
|
||||
"""
|
||||
Return a Tensorflow boolean graph that indicates whether
|
||||
sample[features_key] has the specified target shape. Only check
|
||||
not None entries of target_shape.
|
||||
|
||||
:param tensor_tf: Tensor to check shape for.
|
||||
:param target_shape: Target shape to compare tensor to.
|
||||
:returns: True if shape is valid, False otherwise (as TF boolean).
|
||||
Parameters:
|
||||
tensor_tf (tensorflow.Tensor):
|
||||
Tensor to check shape for.
|
||||
target_shape (Any):
|
||||
Target shape to compare tensor to.
|
||||
|
||||
Returns:
|
||||
bool:
|
||||
`True` if shape is valid, `False` otherwise (as TF boolean).
|
||||
"""
|
||||
result = tf.constant(True)
|
||||
for i, target_length in enumerate(target_shape):
|
||||
if target_length:
|
||||
result = tf.logical_and(
|
||||
result,
|
||||
tf.equal(tf.constant(target_length), tf.shape(tensor_tf)[i]))
|
||||
result, tf.equal(tf.constant(target_length), tf.shape(tensor_tf)[i])
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def set_tensor_shape(tensor, tensor_shape):
|
||||
""" Set shape for a tensor (not in place, as opposed to tf.set_shape)
|
||||
def set_tensor_shape(tensor: tf.Tensor, tensor_shape: Any) -> tf.Tensor:
|
||||
"""
|
||||
Set shape for a tensor (not in place, as opposed to tf.set_shape)
|
||||
|
||||
:param tensor: Tensor to reshape.
|
||||
:param tensor_shape: Shape to apply to the tensor.
|
||||
:returns: A reshaped tensor.
|
||||
Parameters:
|
||||
tensor (tensorflow.Tensor):
|
||||
Tensor to reshape.
|
||||
tensor_shape (Any):
|
||||
Shape to apply to the tensor.
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
A reshaped tensor.
|
||||
"""
|
||||
# NOTE: That SOUND LIKE IN PLACE HERE ?
|
||||
tensor.set_shape(tensor_shape)
|
||||
|
||||
@@ -7,82 +7,82 @@ __email__ = 'spleeter@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
|
||||
import filecmp
|
||||
import itertools
|
||||
from os import makedirs
|
||||
from os.path import splitext, basename, exists, join
|
||||
from os.path import join
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import tensorflow as tf
|
||||
from spleeter.__main__ import evaluate
|
||||
from spleeter.audio.adapter import AudioAdapter
|
||||
|
||||
from spleeter.audio.adapter import get_default_audio_adapter
|
||||
from spleeter.commands import create_argument_parser
|
||||
|
||||
from spleeter.commands import evaluate
|
||||
|
||||
from spleeter.utils.configuration import load_configuration
|
||||
|
||||
BACKENDS = ["tensorflow", "librosa"]
|
||||
TEST_CONFIGURATIONS = {el:el for el in BACKENDS}
|
||||
BACKENDS = ['tensorflow', 'librosa']
|
||||
TEST_CONFIGURATIONS = {el: el for el in BACKENDS}
|
||||
|
||||
res_4stems = {
|
||||
"vocals": {
|
||||
"SDR": 3.25e-05,
|
||||
"SAR": -11.153575,
|
||||
"SIR": -1.3849,
|
||||
"ISR": 2.75e-05
|
||||
},
|
||||
"drums": {
|
||||
"SDR": -0.079505,
|
||||
"SAR": -15.7073575,
|
||||
"SIR": -4.972755,
|
||||
"ISR": 0.0013575
|
||||
},
|
||||
"bass":{
|
||||
"SDR": 2.5e-06,
|
||||
"SAR": -10.3520575,
|
||||
"SIR": -4.272325,
|
||||
"ISR": 2.5e-06
|
||||
},
|
||||
"other":{
|
||||
"SDR": -1.359175,
|
||||
"SAR": -14.7076775,
|
||||
"SIR": -4.761505,
|
||||
"ISR": -0.01528
|
||||
}
|
||||
}
|
||||
'vocals': {
|
||||
'SDR': 3.25e-05,
|
||||
'SAR': -11.153575,
|
||||
'SIR': -1.3849,
|
||||
'ISR': 2.75e-05
|
||||
},
|
||||
'drums': {
|
||||
'SDR': -0.079505,
|
||||
'SAR': -15.7073575,
|
||||
'SIR': -4.972755,
|
||||
'ISR': 0.0013575
|
||||
},
|
||||
'bass': {
|
||||
'SDR': 2.5e-06,
|
||||
'SAR': -10.3520575,
|
||||
'SIR': -4.272325,
|
||||
'ISR': 2.5e-06
|
||||
},
|
||||
'other': {
|
||||
'SDR': -1.359175,
|
||||
'SAR': -14.7076775,
|
||||
'SIR': -4.761505,
|
||||
'ISR': -0.01528
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def generate_fake_eval_dataset(path):
|
||||
"""
|
||||
generate fake evaluation dataset
|
||||
"""
|
||||
aa = get_default_audio_adapter()
|
||||
aa = AudioAdapter.default()
|
||||
n_songs = 2
|
||||
fs = 44100
|
||||
duration = 3
|
||||
n_channels = 2
|
||||
rng = np.random.RandomState(seed=0)
|
||||
for song in range(n_songs):
|
||||
song_path = join(path, "test", f"song{song}")
|
||||
song_path = join(path, 'test', f'song{song}')
|
||||
makedirs(song_path, exist_ok=True)
|
||||
for instr in ["mixture", "vocals", "bass", "drums", "other"]:
|
||||
filename = join(song_path, f"{instr}.wav")
|
||||
for instr in ['mixture', 'vocals', 'bass', 'drums', 'other']:
|
||||
filename = join(song_path, f'{instr}.wav')
|
||||
data = rng.rand(duration*fs, n_channels)-0.5
|
||||
aa.save(filename, data, fs)
|
||||
|
||||
|
||||
|
||||
@pytest.mark.parametrize('backend', TEST_CONFIGURATIONS)
|
||||
def test_evaluate(backend):
|
||||
with TemporaryDirectory() as directory:
|
||||
generate_fake_eval_dataset(directory)
|
||||
p = create_argument_parser()
|
||||
arguments = p.parse_args(["evaluate", "-p", "spleeter:4stems", "--mus_dir", directory, "-B", backend])
|
||||
params = load_configuration(arguments.configuration)
|
||||
metrics = evaluate.entrypoint(arguments, params)
|
||||
for instrument, metric in metrics.items():
|
||||
for m, value in metric.items():
|
||||
assert np.allclose(np.median(value), res_4stems[instrument][m], atol=1e-3)
|
||||
with TemporaryDirectory() as dataset:
|
||||
with TemporaryDirectory() as evaluation:
|
||||
generate_fake_eval_dataset(dataset)
|
||||
metrics = evaluate(
|
||||
adapter='spleeter.audio.ffmpeg.FFMPEGProcessAudioAdapter',
|
||||
output_path=evaluation,
|
||||
stft_backend=backend,
|
||||
params_filename='spleeter:4stems',
|
||||
mus_dir=dataset,
|
||||
mwf=False,
|
||||
verbose=False)
|
||||
for instrument, metric in metrics.items():
|
||||
for m, value in metric.items():
|
||||
assert np.allclose(
|
||||
np.median(value),
|
||||
res_4stems[instrument][m],
|
||||
atol=1e-3)
|
||||
|
||||
@@ -10,6 +10,11 @@ __license__ = 'MIT License'
|
||||
from os.path import join
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
from spleeter import SpleeterError
|
||||
from spleeter.audio.adapter import AudioAdapter
|
||||
from spleeter.audio.ffmpeg import FFMPEGProcessAudioAdapter
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
from pytest import fixture, raises
|
||||
|
||||
@@ -17,12 +22,6 @@ import numpy as np
|
||||
import ffmpeg
|
||||
# pylint: enable=import-error
|
||||
|
||||
from spleeter import SpleeterError
|
||||
from spleeter.audio.adapter import AudioAdapter
|
||||
from spleeter.audio.adapter import get_default_audio_adapter
|
||||
from spleeter.audio.adapter import get_audio_adapter
|
||||
from spleeter.audio.ffmpeg import FFMPEGProcessAudioAdapter
|
||||
|
||||
TEST_AUDIO_DESCRIPTOR = 'audio_example.mp3'
|
||||
TEST_OFFSET = 0
|
||||
TEST_DURATION = 600.
|
||||
@@ -32,7 +31,7 @@ TEST_SAMPLE_RATE = 44100
|
||||
@fixture(scope='session')
|
||||
def adapter():
|
||||
""" Target test audio adapter fixture. """
|
||||
return get_default_audio_adapter()
|
||||
return AudioAdapter.default()
|
||||
|
||||
|
||||
@fixture(scope='session')
|
||||
@@ -48,7 +47,7 @@ def audio_data(adapter):
|
||||
def test_default_adapter(adapter):
|
||||
""" Test adapter as default adapter. """
|
||||
assert isinstance(adapter, FFMPEGProcessAudioAdapter)
|
||||
assert adapter is AudioAdapter.DEFAULT
|
||||
assert adapter is AudioAdapter._DEFAULT
|
||||
|
||||
|
||||
def test_load(audio_data):
|
||||
|
||||
@@ -5,12 +5,12 @@
|
||||
|
||||
from pytest import raises
|
||||
|
||||
from spleeter.model.provider import get_default_model_provider
|
||||
from spleeter.model.provider import ModelProvider
|
||||
|
||||
|
||||
def test_checksum():
|
||||
""" Test archive checksum index retrieval. """
|
||||
provider = get_default_model_provider()
|
||||
provider = ModelProvider.default()
|
||||
assert provider.checksum('2stems') == \
|
||||
'f3a90b39dd2874269e8b05a48a86745df897b848c61f3958efc80a39152bd692'
|
||||
assert provider.checksum('4stems') == \
|
||||
|
||||
@@ -17,7 +17,7 @@ import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from spleeter import SpleeterError
|
||||
from spleeter.audio.adapter import get_default_audio_adapter
|
||||
from spleeter.audio.adapter import AudioAdapter
|
||||
from spleeter.separator import Separator
|
||||
|
||||
TEST_AUDIO_DESCRIPTORS = ['audio_example.mp3', 'audio_example_mono.mp3']
|
||||
@@ -41,7 +41,7 @@ print("RUNNING TESTS WITH TF VERSION {}".format(tf.__version__))
|
||||
|
||||
@pytest.mark.parametrize('test_file', TEST_AUDIO_DESCRIPTORS)
|
||||
def test_separator_backends(test_file):
|
||||
adapter = get_default_audio_adapter()
|
||||
adapter = AudioAdapter.default()
|
||||
waveform, _ = adapter.load(test_file)
|
||||
|
||||
separator_lib = Separator(
|
||||
@@ -64,11 +64,13 @@ def test_separator_backends(test_file):
|
||||
assert np.allclose(out_tf[instrument], out_lib[instrument], atol=1e-5)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('test_file, configuration, backend', TEST_CONFIGURATIONS)
|
||||
@pytest.mark.parametrize(
|
||||
'test_file, configuration, backend',
|
||||
TEST_CONFIGURATIONS)
|
||||
def test_separate(test_file, configuration, backend):
|
||||
""" Test separation from raw data. """
|
||||
instruments = MODEL_TO_INST[configuration]
|
||||
adapter = get_default_audio_adapter()
|
||||
adapter = AudioAdapter.default()
|
||||
waveform, _ = adapter.load(test_file)
|
||||
separator = Separator(
|
||||
configuration, stft_backend=backend, multiprocess=False)
|
||||
@@ -85,7 +87,9 @@ def test_separate(test_file, configuration, backend):
|
||||
assert not np.allclose(track, prediction[compared])
|
||||
|
||||
|
||||
@pytest.mark.parametrize('test_file, configuration, backend', TEST_CONFIGURATIONS)
|
||||
@pytest.mark.parametrize(
|
||||
'test_file, configuration, backend',
|
||||
TEST_CONFIGURATIONS)
|
||||
def test_separate_to_file(test_file, configuration, backend):
|
||||
""" Test file based separation. """
|
||||
instruments = MODEL_TO_INST[configuration]
|
||||
@@ -102,7 +106,9 @@ def test_separate_to_file(test_file, configuration, backend):
|
||||
'{}/{}.wav'.format(name, instrument)))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('test_file, configuration, backend', TEST_CONFIGURATIONS)
|
||||
@pytest.mark.parametrize(
|
||||
'test_file, configuration, backend',
|
||||
TEST_CONFIGURATIONS)
|
||||
def test_filename_format(test_file, configuration, backend):
|
||||
""" Test custom filename format. """
|
||||
instruments = MODEL_TO_INST[configuration]
|
||||
@@ -120,7 +126,9 @@ def test_filename_format(test_file, configuration, backend):
|
||||
'export/{}/{}.wav'.format(name, instrument)))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('test_file, configuration', MODELS_AND_TEST_FILES)
|
||||
@pytest.mark.parametrize(
|
||||
'test_file, configuration',
|
||||
MODELS_AND_TEST_FILES)
|
||||
def test_filename_conflict(test_file, configuration):
|
||||
""" Test error handling with static pattern. """
|
||||
separator = Separator(configuration, multiprocess=False)
|
||||
|
||||
@@ -7,107 +7,102 @@ __email__ = 'research@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
|
||||
import filecmp
|
||||
import itertools
|
||||
import json
|
||||
import os
|
||||
|
||||
from os import makedirs
|
||||
from os.path import splitext, basename, exists, join
|
||||
from os.path import join
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import json
|
||||
|
||||
import tensorflow as tf
|
||||
from spleeter.audio.adapter import AudioAdapter
|
||||
from spleeter.__main__ import spleeter
|
||||
from typer.testing import CliRunner
|
||||
|
||||
from spleeter.audio.adapter import get_default_audio_adapter
|
||||
from spleeter.commands import create_argument_parser
|
||||
|
||||
from spleeter.commands import train
|
||||
|
||||
from spleeter.utils.configuration import load_configuration
|
||||
|
||||
TRAIN_CONFIG = {
|
||||
"mix_name": "mix",
|
||||
"instrument_list": ["vocals", "other"],
|
||||
"sample_rate":44100,
|
||||
"frame_length":4096,
|
||||
"frame_step":1024,
|
||||
"T":128,
|
||||
"F":128,
|
||||
"n_channels":2,
|
||||
"chunk_duration":4,
|
||||
"n_chunks_per_song":1,
|
||||
"separation_exponent":2,
|
||||
"mask_extension":"zeros",
|
||||
"learning_rate": 1e-4,
|
||||
"batch_size":2,
|
||||
"train_max_steps": 10,
|
||||
"throttle_secs":20,
|
||||
"save_checkpoints_steps":100,
|
||||
"save_summary_steps":5,
|
||||
"random_seed":0,
|
||||
"model":{
|
||||
"type":"unet.unet",
|
||||
"params":{
|
||||
"conv_activation":"ELU",
|
||||
"deconv_activation":"ELU"
|
||||
'mix_name': 'mix',
|
||||
'instrument_list': ['vocals', 'other'],
|
||||
'sample_rate': 44100,
|
||||
'frame_length': 4096,
|
||||
'frame_step': 1024,
|
||||
'T': 128,
|
||||
'F': 128,
|
||||
'n_channels': 2,
|
||||
'chunk_duration': 4,
|
||||
'n_chunks_per_song': 1,
|
||||
'separation_exponent': 2,
|
||||
'mask_extension': 'zeros',
|
||||
'learning_rate': 1e-4,
|
||||
'batch_size': 2,
|
||||
'train_max_steps': 10,
|
||||
'throttle_secs': 20,
|
||||
'save_checkpoints_steps': 100,
|
||||
'save_summary_steps': 5,
|
||||
'random_seed': 0,
|
||||
'model': {
|
||||
'type': 'unet.unet',
|
||||
'params': {
|
||||
'conv_activation': 'ELU',
|
||||
'deconv_activation': 'ELU'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def generate_fake_training_dataset(path, instrument_list=["vocals", "other"]):
|
||||
def generate_fake_training_dataset(path, instrument_list=['vocals', 'other']):
|
||||
"""
|
||||
generates a fake training dataset in path:
|
||||
- generates audio files
|
||||
- generates a csv file describing the dataset
|
||||
"""
|
||||
aa = get_default_audio_adapter()
|
||||
aa = AudioAdapter.default()
|
||||
n_songs = 2
|
||||
fs = 44100
|
||||
duration = 6
|
||||
n_channels = 2
|
||||
rng = np.random.RandomState(seed=0)
|
||||
dataset_df = pd.DataFrame(columns=["mix_path"]+[f"{instr}_path" for instr in instrument_list]+["duration"])
|
||||
dataset_df = pd.DataFrame(
|
||||
columns=['mix_path'] + [
|
||||
f'{instr}_path' for instr in instrument_list] + ['duration'])
|
||||
for song in range(n_songs):
|
||||
song_path = join(path, "train", f"song{song}")
|
||||
song_path = join(path, 'train', f'song{song}')
|
||||
makedirs(song_path, exist_ok=True)
|
||||
dataset_df.loc[song, f"duration"] = duration
|
||||
for instr in instrument_list+["mix"]:
|
||||
filename = join(song_path, f"{instr}.wav")
|
||||
dataset_df.loc[song, f'duration'] = duration
|
||||
for instr in instrument_list+['mix']:
|
||||
filename = join(song_path, f'{instr}.wav')
|
||||
data = rng.rand(duration*fs, n_channels)-0.5
|
||||
aa.save(filename, data, fs)
|
||||
dataset_df.loc[song, f"{instr}_path"] = join("train", f"song{song}", f"{instr}.wav")
|
||||
|
||||
dataset_df.to_csv(join(path, "train", "train.csv"), index=False)
|
||||
|
||||
dataset_df.loc[song, f'{instr}_path'] = join(
|
||||
'train',
|
||||
f'song{song}',
|
||||
f'{instr}.wav')
|
||||
dataset_df.to_csv(join(path, 'train', 'train.csv'), index=False)
|
||||
|
||||
|
||||
def test_train():
|
||||
|
||||
|
||||
with TemporaryDirectory() as path:
|
||||
|
||||
# generate training dataset
|
||||
generate_fake_training_dataset(path)
|
||||
|
||||
# set training command aruments
|
||||
p = create_argument_parser()
|
||||
arguments = p.parse_args(["train", "-p", "useless_config.json", "-d", path])
|
||||
TRAIN_CONFIG["train_csv"] = join(path, "train", "train.csv")
|
||||
TRAIN_CONFIG["validation_csv"] = join(path, "train", "train.csv")
|
||||
TRAIN_CONFIG["model_dir"] = join(path, "model")
|
||||
TRAIN_CONFIG["training_cache"] = join(path, "cache", "training")
|
||||
TRAIN_CONFIG["validation_cache"] = join(path, "cache", "validation")
|
||||
|
||||
runner = CliRunner()
|
||||
TRAIN_CONFIG['train_csv'] = join(path, 'train', 'train.csv')
|
||||
TRAIN_CONFIG['validation_csv'] = join(path, 'train', 'train.csv')
|
||||
TRAIN_CONFIG['model_dir'] = join(path, 'model')
|
||||
TRAIN_CONFIG['training_cache'] = join(path, 'cache', 'training')
|
||||
TRAIN_CONFIG['validation_cache'] = join(path, 'cache', 'validation')
|
||||
with open('useless_config.json', 'w') as stream:
|
||||
json.dump(TRAIN_CONFIG, stream)
|
||||
# execute training
|
||||
res = train.entrypoint(arguments, TRAIN_CONFIG)
|
||||
|
||||
result = runner.invoke(spleeter, [
|
||||
'train',
|
||||
'-p', 'useless_config.json',
|
||||
'-d', path
|
||||
])
|
||||
# assert that model checkpoint was created.
|
||||
assert os.path.exists(join(path,'model','model.ckpt-10.index'))
|
||||
assert os.path.exists(join(path,'model','checkpoint'))
|
||||
assert os.path.exists(join(path,'model','model.ckpt-0.meta'))
|
||||
|
||||
if __name__=="__main__":
|
||||
test_train()
|
||||
assert os.path.exists(join(path, 'model', 'model.ckpt-10.index'))
|
||||
assert os.path.exists(join(path, 'model', 'checkpoint'))
|
||||
assert os.path.exists(join(path, 'model', 'model.ckpt-0.meta'))
|
||||
assert result.exit_code == 0
|
||||
|
||||
Reference in New Issue
Block a user