mirror of
https://github.com/YuzuZensai/spleeter.git
synced 2026-01-06 04:32:43 +00:00
🎨 updated tensor.py
This commit is contained in:
2
setup.py
2
setup.py
@@ -55,7 +55,7 @@ setup(
|
||||
'norbert==0.2.1',
|
||||
'numpy<1.19.0,>=1.16.0',
|
||||
'pandas==1.1.2',
|
||||
'requests',
|
||||
'httpx[h2]',
|
||||
'scipy==1.4.1',
|
||||
'setuptools>=41.0.0',
|
||||
'librosa==0.8.0',
|
||||
|
||||
@@ -3,6 +3,9 @@
|
||||
|
||||
""" Utility function for tensorflow. """
|
||||
|
||||
from typing import Any, Callable, Dict
|
||||
|
||||
# pyright: reportMissingImports=false
|
||||
# pylint: disable=import-error
|
||||
import tensorflow as tf
|
||||
import pandas as pd
|
||||
@@ -13,29 +16,35 @@ __author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
|
||||
|
||||
def sync_apply(tensor_dict, func, concat_axis=1):
|
||||
""" Return a function that applies synchronously the provided func on the
|
||||
provided dictionnary of tensor. This means that func is applied to the
|
||||
concatenation of the tensors in tensor_dict. This is useful for performing
|
||||
random operation that needs the same drawn value on multiple tensor, such
|
||||
as a random time-crop on both input data and label (the same crop should be
|
||||
applied to both input data and label, so random crop cannot be applied
|
||||
separately on each of them).
|
||||
def sync_apply(
|
||||
tensor_dict: tf.Tensor,
|
||||
func: Callable,
|
||||
concat_axis: int = 1) -> Dict[str, tf.Tensor]:
|
||||
"""
|
||||
Return a function that applies synchronously the provided func on the
|
||||
provided dictionnary of tensor. This means that func is applied to the
|
||||
concatenation of the tensors in tensor_dict. This is useful for
|
||||
performing random operation that needs the same drawn value on multiple
|
||||
tensor, such as a random time-crop on both input data and label (the
|
||||
same crop should be applied to both input data and label, so random
|
||||
crop cannot be applied separately on each of them).
|
||||
|
||||
IMPORTANT NOTE: all tensor are assumed to be the same shape.
|
||||
Notes:
|
||||
All tensor are assumed to be the same shape.
|
||||
|
||||
Params:
|
||||
- tensor_dict: dictionary (key: strings, values: tf.tensor)
|
||||
a dictionary of tensor.
|
||||
- func: function
|
||||
function to be applied to the concatenation of the tensors in
|
||||
tensor_dict
|
||||
- concat_axis: int
|
||||
The axis on which to perform the concatenation.
|
||||
Parameters:
|
||||
tensor_dict (Dict[str, tensorflow.Tensor]):
|
||||
A dictionary of tensor.
|
||||
func (Callable):
|
||||
Function to be applied to the concatenation of the tensors in
|
||||
`tensor_dict`.
|
||||
concat_axis (int):
|
||||
The axis on which to perform the concatenation.
|
||||
|
||||
Returns:
|
||||
processed tensors dictionary with the same name (keys) as input
|
||||
tensor_dict.
|
||||
Dict[str, tensorflow.Tensor]:
|
||||
Processed tensors dictionary with the same name (keys) as input
|
||||
tensor_dict.
|
||||
"""
|
||||
if concat_axis not in {0, 1}:
|
||||
raise NotImplementedError(
|
||||
@@ -48,26 +57,27 @@ def sync_apply(tensor_dict, func, concat_axis=1):
|
||||
if concat_axis == 0:
|
||||
return {
|
||||
name: processed_concat_tensor[index * D:(index + 1) * D, :, :]
|
||||
for index, name in enumerate(tensor_dict)
|
||||
}
|
||||
for index, name in enumerate(tensor_dict)}
|
||||
return {
|
||||
name: processed_concat_tensor[:, index * D:(index + 1) * D, :]
|
||||
for index, name in enumerate(tensor_dict)
|
||||
}
|
||||
for index, name in enumerate(tensor_dict)}
|
||||
|
||||
|
||||
def from_float32_to_uint8(
|
||||
tensor,
|
||||
tensor_key='tensor',
|
||||
min_key='min',
|
||||
max_key='max'):
|
||||
tensor: tf.Tensor,
|
||||
tensor_key: str = 'tensor',
|
||||
min_key: str = 'min',
|
||||
max_key: str = 'max') -> tf.Tensor:
|
||||
"""
|
||||
|
||||
:param tensor:
|
||||
:param tensor_key:
|
||||
:param min_key:
|
||||
:param max_key:
|
||||
:returns:
|
||||
Parameters:
|
||||
tensor (tensorflow.Tensor):
|
||||
tensor_key (str):
|
||||
min_key (str):
|
||||
max_key (str):
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
"""
|
||||
tensor_min = tf.reduce_min(tensor)
|
||||
tensor_max = tf.reduce_max(tensor)
|
||||
@@ -76,17 +86,22 @@ def from_float32_to_uint8(
|
||||
(tensor - tensor_min) / (tensor_max - tensor_min + 1e-16)
|
||||
* 255.9999, dtype=tf.uint8),
|
||||
min_key: tensor_min,
|
||||
max_key: tensor_max
|
||||
}
|
||||
max_key: tensor_max}
|
||||
|
||||
|
||||
def from_uint8_to_float32(tensor, tensor_min, tensor_max):
|
||||
def from_uint8_to_float32(
|
||||
tensor: tf.Tensor,
|
||||
tensor_min: tf.Tensor,
|
||||
tensor_max: tf.Tensor) -> tf.Tensor:
|
||||
"""
|
||||
|
||||
:param tensor:
|
||||
:param tensor_min:
|
||||
:param tensor_max:
|
||||
:returns:
|
||||
Parameters:
|
||||
tensor (tensorflow.Tensor):
|
||||
tensor_min (tensorflow.Tensor):
|
||||
tensor_max (tensorflow.Tensor):
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
"""
|
||||
return (
|
||||
tf.cast(tensor, tf.float32)
|
||||
@@ -94,23 +109,31 @@ def from_uint8_to_float32(tensor, tensor_min, tensor_max):
|
||||
/ 255.9999 + tensor_min)
|
||||
|
||||
|
||||
def pad_and_partition(tensor, segment_len):
|
||||
""" Pad and partition a tensor into segment of len segment_len
|
||||
along the first dimension. The tensor is padded with 0 in order
|
||||
to ensure that the first dimension is a multiple of segment_len.
|
||||
def pad_and_partition(
|
||||
tensor: tf.Tensor,
|
||||
segment_len: int) -> tf.Tensor:
|
||||
"""
|
||||
Pad and partition a tensor into segment of len `segment_len`
|
||||
along the first dimension. The tensor is padded with 0 in order
|
||||
to ensure that the first dimension is a multiple of `segment_len`.
|
||||
|
||||
Tensor must be of known fixed rank
|
||||
Tensor must be of known fixed rank
|
||||
|
||||
:Example:
|
||||
Examples:
|
||||
|
||||
>>> tensor = [[1, 2, 3], [4, 5, 6]]
|
||||
>>> segment_len = 2
|
||||
>>> pad_and_partition(tensor, segment_len)
|
||||
[[[1, 2], [4, 5]], [[3, 0], [6, 0]]]
|
||||
```python
|
||||
>>> tensor = [[1, 2, 3], [4, 5, 6]]
|
||||
>>> segment_len = 2
|
||||
>>> pad_and_partition(tensor, segment_len)
|
||||
[[[1, 2], [4, 5]], [[3, 0], [6, 0]]]
|
||||
````
|
||||
|
||||
:param tensor:
|
||||
:param segment_len:
|
||||
:returns:
|
||||
Parameters:
|
||||
tensor (tensorflow.Tensor):
|
||||
segment_len (int):
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
"""
|
||||
tensor_size = tf.math.floormod(tf.shape(tensor)[0], segment_len)
|
||||
pad_size = tf.math.floormod(segment_len - tensor_size, segment_len)
|
||||
@@ -125,12 +148,15 @@ def pad_and_partition(tensor, segment_len):
|
||||
axis=0))
|
||||
|
||||
|
||||
def pad_and_reshape(instr_spec, frame_length, F):
|
||||
def pad_and_reshape(instr_spec, frame_length, F) -> Any:
|
||||
"""
|
||||
:param instr_spec:
|
||||
:param frame_length:
|
||||
:param F:
|
||||
:returns:
|
||||
Parameters:
|
||||
instr_spec:
|
||||
frame_length:
|
||||
F:
|
||||
|
||||
Returns:
|
||||
Any:
|
||||
"""
|
||||
spec_shape = tf.shape(instr_spec)
|
||||
extension_row = tf.zeros((spec_shape[0], spec_shape[1], 1, spec_shape[-1]))
|
||||
@@ -146,12 +172,18 @@ def pad_and_reshape(instr_spec, frame_length, F):
|
||||
return processed_instr_spec
|
||||
|
||||
|
||||
def dataset_from_csv(csv_path, **kwargs):
|
||||
""" Load dataset from a CSV file using Pandas. kwargs if any are
|
||||
forwarded to the `pandas.read_csv` function.
|
||||
def dataset_from_csv(csv_path: str, **kwargs) -> Any:
|
||||
"""
|
||||
Load dataset from a CSV file using Pandas. kwargs if any are
|
||||
forwarded to the `pandas.read_csv` function.
|
||||
|
||||
:param csv_path: Path of the CSV file to load dataset from.
|
||||
:returns: Loaded dataset.
|
||||
Parameters:
|
||||
csv_path (str):
|
||||
Path of the CSV file to load dataset from.
|
||||
|
||||
Returns:
|
||||
Any:
|
||||
Loaded dataset.
|
||||
"""
|
||||
df = pd.read_csv(csv_path, **kwargs)
|
||||
dataset = (
|
||||
@@ -161,14 +193,23 @@ def dataset_from_csv(csv_path, **kwargs):
|
||||
return dataset
|
||||
|
||||
|
||||
def check_tensor_shape(tensor_tf, target_shape):
|
||||
""" Return a Tensorflow boolean graph that indicates whether
|
||||
sample[features_key] has the specified target shape. Only check
|
||||
not None entries of target_shape.
|
||||
def check_tensor_shape(
|
||||
tensor_tf: tf.Tensor,
|
||||
target_shape: Any) -> bool:
|
||||
"""
|
||||
Return a Tensorflow boolean graph that indicates whether
|
||||
sample[features_key] has the specified target shape. Only check
|
||||
not None entries of target_shape.
|
||||
|
||||
:param tensor_tf: Tensor to check shape for.
|
||||
:param target_shape: Target shape to compare tensor to.
|
||||
:returns: True if shape is valid, False otherwise (as TF boolean).
|
||||
Parameters:
|
||||
tensor_tf (tensorflow.Tensor):
|
||||
Tensor to check shape for.
|
||||
target_shape (Any):
|
||||
Target shape to compare tensor to.
|
||||
|
||||
Returns:
|
||||
bool:
|
||||
`True` if shape is valid, `False` otherwise (as TF boolean).
|
||||
"""
|
||||
result = tf.constant(True)
|
||||
for i, target_length in enumerate(target_shape):
|
||||
@@ -179,12 +220,21 @@ def check_tensor_shape(tensor_tf, target_shape):
|
||||
return result
|
||||
|
||||
|
||||
def set_tensor_shape(tensor, tensor_shape):
|
||||
""" Set shape for a tensor (not in place, as opposed to tf.set_shape)
|
||||
def set_tensor_shape(
|
||||
tensor: tf.Tensor,
|
||||
tensor_shape: Any) -> tf.Tensor:
|
||||
"""
|
||||
Set shape for a tensor (not in place, as opposed to tf.set_shape)
|
||||
|
||||
:param tensor: Tensor to reshape.
|
||||
:param tensor_shape: Shape to apply to the tensor.
|
||||
:returns: A reshaped tensor.
|
||||
Parameters:
|
||||
tensor (tensorflow.Tensor):
|
||||
Tensor to reshape.
|
||||
tensor_shape (Any):
|
||||
Shape to apply to the tensor.
|
||||
|
||||
Returns:
|
||||
tensorflow.Tensor:
|
||||
A reshaped tensor.
|
||||
"""
|
||||
# NOTE: That SOUND LIKE IN PLACE HERE ?
|
||||
tensor.set_shape(tensor_shape)
|
||||
|
||||
Reference in New Issue
Block a user