mirror of
https://github.com/YuzuZensai/spleeter.git
synced 2026-01-06 04:32:43 +00:00
pep8
This commit is contained in:
@@ -126,16 +126,17 @@ class Separator(object):
|
||||
H = self._params["frame_step"]
|
||||
win = hann(N, sym=False)
|
||||
fstft = istft if inverse else stft
|
||||
win_len_arg = {"win_length": None, "length": length + 2*pad_edges} if inverse else {"n_fft": N}
|
||||
win_len_arg = {"win_length": None, "length": length +
|
||||
2*pad_edges} if inverse else {"n_fft": N}
|
||||
n_channels = data.shape[-1]
|
||||
out = []
|
||||
for c in range(n_channels):
|
||||
d = data[:, :, c].T if inverse else np.concatenate((np.zeros(pad_edges,), data[:,c], np.zeros(pad_edges,)))
|
||||
for c in range(n_channels):
|
||||
d = data[:, :, c].T if inverse else np.concatenate(
|
||||
(np.zeros(pad_edges,), data[:, c], np.zeros(pad_edges,)))
|
||||
s = fstft(d, hop_length=H, window=win, center=False, **win_len_arg)
|
||||
if inverse:
|
||||
s = s[pad_edges:-pad_edges]
|
||||
s = np.expand_dims(s.T, 2-inverse)
|
||||
|
||||
out.append(s)
|
||||
if len(out) == 1:
|
||||
return out[0]
|
||||
|
||||
@@ -38,6 +38,7 @@ TEST_CONFIGURATIONS = list(itertools.product(TEST_AUDIO_DESCRIPTORS, MODELS, BAC
|
||||
|
||||
print("RUNNING TESTS WITH TF VERSION {}".format(tf.__version__))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('test_file', TEST_AUDIO_DESCRIPTORS)
|
||||
def test_separator_backends(test_file):
|
||||
adapter = get_default_audio_adapter()
|
||||
@@ -48,22 +49,24 @@ def test_separator_backends(test_file):
|
||||
|
||||
# Test the stft and inverse stft provides exact reconstruction
|
||||
stft_matrix = separator_lib._stft(waveform)
|
||||
reconstructed = separator_lib._stft(stft_matrix, inverse=True, length= waveform.shape[0])
|
||||
reconstructed = separator_lib._stft(
|
||||
stft_matrix, inverse=True, length=waveform.shape[0])
|
||||
assert np.allclose(reconstructed, waveform, atol=1e-2)
|
||||
|
||||
# # now also test that tensorflow and librosa STFT provide same results
|
||||
from spleeter.audio.spectrogram import compute_spectrogram_tf
|
||||
tf_waveform = tf.convert_to_tensor(waveform, tf.float32)
|
||||
spectrogram_tf = compute_spectrogram_tf(tf_waveform,
|
||||
separator_tf._params['frame_length'],
|
||||
separator_tf._params['frame_step'],)
|
||||
separator_tf._params['frame_length'],
|
||||
separator_tf._params['frame_step'],)
|
||||
with tf.Session() as sess:
|
||||
spectrogram_tf_eval = spectrogram_tf.eval()
|
||||
|
||||
# check that stfts are equivalent up to the padding in the librosa case
|
||||
assert stft_matrix.shape[0] == spectrogram_tf_eval.shape[0] + 2
|
||||
assert stft_matrix.shape[1:] == spectrogram_tf_eval.shape[1:]
|
||||
assert np.allclose(np.abs(stft_matrix[1:-1]), spectrogram_tf_eval, atol=1e-2)
|
||||
assert np.allclose(
|
||||
np.abs(stft_matrix[1:-1]), spectrogram_tf_eval, atol=1e-2)
|
||||
|
||||
# compare both separation, it should be close
|
||||
out_tf = separator_tf._separate_tensorflow(waveform, test_file)
|
||||
@@ -75,6 +78,7 @@ def test_separator_backends(test_file):
|
||||
assert np.sum(np.abs(out_lib[instrument])) > 1000
|
||||
assert np.allclose(out_tf[instrument], out_lib[instrument], atol=0.1)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('test_file, configuration, backend', TEST_CONFIGURATIONS)
|
||||
def test_separate(test_file, configuration, backend):
|
||||
""" Test separation from raw data. """
|
||||
|
||||
Reference in New Issue
Block a user