mirror of
https://github.com/YuzuZensai/spleeter.git
synced 2026-01-06 04:32:43 +00:00
Updated black version
This commit is contained in:
777
poetry.lock
generated
777
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -44,7 +44,7 @@ packages = [ { include = "spleeter" } ]
|
||||
include = ["LICENSE", "spleeter/resources/*.json"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.6.1,<3.10"
|
||||
python = ">=3.6.2,<3.10"
|
||||
ffmpeg-python = "0.2.0"
|
||||
norbert = "0.2.1"
|
||||
httpx = {extras = ["http2"], version = "^0.19.0"}
|
||||
@@ -62,7 +62,7 @@ llvmlite = "^0.36.0"
|
||||
[tool.poetry.dev-dependencies]
|
||||
pytest = "^6.2.1"
|
||||
isort = "^5.7.0"
|
||||
black = "^20.8b1"
|
||||
black = "^21.7b"
|
||||
mypy = "^0.790"
|
||||
pytest-forked = "^1.3.0"
|
||||
musdb = "0.3.1"
|
||||
|
||||
@@ -19,6 +19,6 @@ __license__ = "MIT License"
|
||||
|
||||
|
||||
class SpleeterError(Exception):
|
||||
""" Custom exception for Spleeter related error. """
|
||||
"""Custom exception for Spleeter related error."""
|
||||
|
||||
pass
|
||||
|
||||
@@ -251,7 +251,7 @@ def evaluate(
|
||||
|
||||
|
||||
def entrypoint():
|
||||
""" Application entrypoint. """
|
||||
"""Application entrypoint."""
|
||||
try:
|
||||
spleeter()
|
||||
except SpleeterError as e:
|
||||
|
||||
@@ -18,7 +18,7 @@ __license__ = "MIT License"
|
||||
|
||||
|
||||
class Codec(str, Enum):
|
||||
""" Enumeration of supported audio codec. """
|
||||
"""Enumeration of supported audio codec."""
|
||||
|
||||
WAV: str = "wav"
|
||||
MP3: str = "mp3"
|
||||
@@ -29,7 +29,7 @@ class Codec(str, Enum):
|
||||
|
||||
|
||||
class STFTBackend(str, Enum):
|
||||
""" Enumeration of supported STFT backend. """
|
||||
"""Enumeration of supported STFT backend."""
|
||||
|
||||
AUTO: str = "auto"
|
||||
TENSORFLOW: str = "tensorflow"
|
||||
|
||||
@@ -28,7 +28,7 @@ __license__ = "MIT License"
|
||||
|
||||
|
||||
class AudioAdapter(ABC):
|
||||
""" An abstract class for manipulating audio signal. """
|
||||
"""An abstract class for manipulating audio signal."""
|
||||
|
||||
_DEFAULT: "AudioAdapter" = None
|
||||
""" Default audio adapter singleton instance. """
|
||||
|
||||
@@ -129,7 +129,7 @@ def get_validation_dataset(
|
||||
|
||||
|
||||
class InstrumentDatasetBuilder(object):
|
||||
""" Instrument based filter and mapper provider. """
|
||||
"""Instrument based filter and mapper provider."""
|
||||
|
||||
def __init__(self, parent, instrument) -> None:
|
||||
"""
|
||||
@@ -148,7 +148,7 @@ class InstrumentDatasetBuilder(object):
|
||||
self._max_spectrogram_key = f"max_{instrument}_spectrogram"
|
||||
|
||||
def load_waveform(self, sample):
|
||||
""" Load waveform for given sample. """
|
||||
"""Load waveform for given sample."""
|
||||
return dict(
|
||||
sample,
|
||||
**self._parent._audio_adapter.load_tf_waveform(
|
||||
@@ -161,7 +161,7 @@ class InstrumentDatasetBuilder(object):
|
||||
)
|
||||
|
||||
def compute_spectrogram(self, sample):
|
||||
""" Compute spectrogram of the given sample. """
|
||||
"""Compute spectrogram of the given sample."""
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
@@ -187,7 +187,7 @@ class InstrumentDatasetBuilder(object):
|
||||
)
|
||||
|
||||
def convert_to_uint(self, sample):
|
||||
""" Convert given sample from float to unit. """
|
||||
"""Convert given sample from float to unit."""
|
||||
return dict(
|
||||
sample,
|
||||
**spectrogram_to_db_uint(
|
||||
@@ -199,11 +199,11 @@ class InstrumentDatasetBuilder(object):
|
||||
)
|
||||
|
||||
def filter_infinity(self, sample):
|
||||
""" Filter infinity sample. """
|
||||
"""Filter infinity sample."""
|
||||
return tf.logical_not(tf.math.is_inf(sample[self._min_spectrogram_key]))
|
||||
|
||||
def convert_to_float32(self, sample):
|
||||
""" Convert given sample from unit to float. """
|
||||
"""Convert given sample from unit to float."""
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
@@ -219,7 +219,7 @@ class InstrumentDatasetBuilder(object):
|
||||
""" """
|
||||
|
||||
def start(sample):
|
||||
""" mid_segment_start """
|
||||
"""mid_segment_start"""
|
||||
return tf.cast(
|
||||
tf.maximum(
|
||||
tf.shape(sample[self._spectrogram_key])[0] / 2
|
||||
@@ -239,14 +239,14 @@ class InstrumentDatasetBuilder(object):
|
||||
)
|
||||
|
||||
def filter_shape(self, sample):
|
||||
""" Filter badly shaped sample. """
|
||||
"""Filter badly shaped sample."""
|
||||
return check_tensor_shape(
|
||||
sample[self._spectrogram_key],
|
||||
(self._parent._T, self._parent._F, self._parent._n_channels),
|
||||
)
|
||||
|
||||
def reshape_spectrogram(self, sample):
|
||||
""" Reshape given sample. """
|
||||
"""Reshape given sample."""
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
@@ -326,7 +326,7 @@ class DatasetBuilder(object):
|
||||
)
|
||||
|
||||
def expand_path(self, sample):
|
||||
""" Expands audio paths for the given sample. """
|
||||
"""Expands audio paths for the given sample."""
|
||||
return dict(
|
||||
sample,
|
||||
**{
|
||||
@@ -338,15 +338,15 @@ class DatasetBuilder(object):
|
||||
)
|
||||
|
||||
def filter_error(self, sample):
|
||||
""" Filter errored sample. """
|
||||
"""Filter errored sample."""
|
||||
return tf.logical_not(sample["waveform_error"])
|
||||
|
||||
def filter_waveform(self, sample):
|
||||
""" Filter waveform from sample. """
|
||||
"""Filter waveform from sample."""
|
||||
return {k: v for k, v in sample.items() if not k == "waveform"}
|
||||
|
||||
def harmonize_spectrogram(self, sample):
|
||||
""" Ensure same size for vocals and mix spectrograms. """
|
||||
"""Ensure same size for vocals and mix spectrograms."""
|
||||
|
||||
def _reduce(sample):
|
||||
return tf.reduce_min(
|
||||
@@ -367,7 +367,7 @@ class DatasetBuilder(object):
|
||||
)
|
||||
|
||||
def filter_short_segments(self, sample):
|
||||
""" Filter out too short segment. """
|
||||
"""Filter out too short segment."""
|
||||
return tf.reduce_any(
|
||||
[
|
||||
tf.shape(sample[f"{instrument}_spectrogram"])[0] >= self._T
|
||||
@@ -376,7 +376,7 @@ class DatasetBuilder(object):
|
||||
)
|
||||
|
||||
def random_time_crop(self, sample):
|
||||
""" Random time crop of 11.88s. """
|
||||
"""Random time crop of 11.88s."""
|
||||
return dict(
|
||||
sample,
|
||||
**sync_apply(
|
||||
@@ -393,7 +393,7 @@ class DatasetBuilder(object):
|
||||
)
|
||||
|
||||
def random_time_stretch(self, sample):
|
||||
""" Randomly time stretch the given sample. """
|
||||
"""Randomly time stretch the given sample."""
|
||||
return dict(
|
||||
sample,
|
||||
**sync_apply(
|
||||
@@ -406,7 +406,7 @@ class DatasetBuilder(object):
|
||||
)
|
||||
|
||||
def random_pitch_shift(self, sample):
|
||||
""" Randomly pitch shift the given sample. """
|
||||
"""Randomly pitch shift the given sample."""
|
||||
return dict(
|
||||
sample,
|
||||
**sync_apply(
|
||||
@@ -420,7 +420,7 @@ class DatasetBuilder(object):
|
||||
)
|
||||
|
||||
def map_features(self, sample):
|
||||
""" Select features and annotation of the given sample. """
|
||||
"""Select features and annotation of the given sample."""
|
||||
input_ = {
|
||||
f"{self._mix_name}_spectrogram": sample[f"{self._mix_name}_spectrogram"]
|
||||
}
|
||||
|
||||
@@ -94,5 +94,5 @@ def apply_blstm(
|
||||
def blstm(
|
||||
input_tensor: tf.Tensor, output_name: str = "output", params: Optional[Dict] = None
|
||||
) -> tf.Tensor:
|
||||
""" Model function applier. """
|
||||
"""Model function applier."""
|
||||
return apply(apply_blstm, input_tensor, output_name, params)
|
||||
|
||||
@@ -193,7 +193,7 @@ def apply_unet(
|
||||
def unet(
|
||||
input_tensor: tf.Tensor, instruments: Iterable[str], params: Optional[Dict] = None
|
||||
) -> Dict:
|
||||
""" Model function applier. """
|
||||
"""Model function applier."""
|
||||
return apply(apply_unet, input_tensor, instruments, params)
|
||||
|
||||
|
||||
|
||||
@@ -51,7 +51,7 @@ def compute_file_checksum(path):
|
||||
|
||||
|
||||
class GithubModelProvider(ModelProvider):
|
||||
""" A ModelProvider implementation backed on Github for remote storage. """
|
||||
"""A ModelProvider implementation backed on Github for remote storage."""
|
||||
|
||||
DEFAULT_HOST: str = "https://github.com"
|
||||
DEFAULT_REPOSITORY: str = "deezer/spleeter"
|
||||
|
||||
@@ -53,15 +53,15 @@ class DataGenerator(object):
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
""" Default constructor. """
|
||||
"""Default constructor."""
|
||||
self._current_data = None
|
||||
|
||||
def update_data(self, data) -> None:
|
||||
""" Replace internal data. """
|
||||
"""Replace internal data."""
|
||||
self._current_data = data
|
||||
|
||||
def __call__(self) -> Generator:
|
||||
""" Generation process. """
|
||||
"""Generation process."""
|
||||
buffer = self._current_data
|
||||
while buffer:
|
||||
yield buffer
|
||||
@@ -94,7 +94,7 @@ def create_estimator(params, MWF):
|
||||
|
||||
|
||||
class Separator(object):
|
||||
""" A wrapper class for performing separation. """
|
||||
"""A wrapper class for performing separation."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@@ -21,7 +21,7 @@ environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
|
||||
|
||||
class TyperLoggerHandler(logging.Handler):
|
||||
""" A custom logger handler that use Typer echo. """
|
||||
"""A custom logger handler that use Typer echo."""
|
||||
|
||||
def emit(self, record: logging.LogRecord) -> None:
|
||||
echo(self.format(record))
|
||||
|
||||
Reference in New Issue
Block a user