Files
spleeter/spleeter/separator.py

288 lines
11 KiB
Python

#!/usr/bin/env python
# coding: utf8
"""
Module that provides a class wrapper for source separation.
:Example:
>>> from spleeter.separator import Separator
>>> separator = Separator('spleeter:2stems')
>>> separator.separate(waveform, lambda instrument, data: ...)
>>> separator.separate_to_file(...)
"""
import os
import logging
from time import time
from multiprocessing import Pool
from os.path import basename, join, splitext, dirname
import numpy as np
import tensorflow as tf
from librosa.core import stft, istft
from scipy.signal.windows import hann
from . import SpleeterError
from .audio.adapter import get_default_audio_adapter
from .audio.convertor import to_stereo
from .utils.configuration import load_configuration
from .utils.estimator import create_estimator, to_predictor, get_default_model_dir
from .model import EstimatorSpecBuilder, InputProviderFactory
__email__ = 'research@deezer.com'
__author__ = 'Deezer Research'
__license__ = 'MIT License'
logger = logging.getLogger("spleeter")
def get_backend(backend):
assert backend in ["auto", "tensorflow", "librosa"]
if backend == "auto":
return "tensorflow" if tf.test.is_gpu_available() else "librosa"
return backend
class Separator(object):
""" A wrapper class for performing separation. """
def __init__(self, params_descriptor, MWF=False, stft_backend="auto", multiprocess=True):
""" Default constructor.
:param params_descriptor: Descriptor for TF params to be used.
:param MWF: (Optional) True if MWF should be used, False otherwise.
"""
self._params = load_configuration(params_descriptor)
self._sample_rate = self._params['sample_rate']
self._MWF = MWF
self._tf_graph = tf.Graph()
self._predictor = None
self._input_provider = None
self._builder = None
self._features = None
self._session = None
self._pool = Pool() if multiprocess else None
self._tasks = []
self._params["stft_backend"] = get_backend(stft_backend)
def __del__(self):
if self._session:
self._session.close()
def _get_predictor(self):
""" Lazy loading access method for internal predictor instance.
:returns: Predictor to use for source separation.
"""
if self._predictor is None:
estimator = create_estimator(self._params, self._MWF)
self._predictor = to_predictor(estimator)
return self._predictor
def join(self, timeout=200):
""" Wait for all pending tasks to be finished.
:param timeout: (Optional) task waiting timeout.
"""
while len(self._tasks) > 0:
task = self._tasks.pop()
task.get()
task.wait(timeout=timeout)
def _separate_tensorflow(self, waveform, audio_descriptor):
"""
Performs source separation over the given waveform with tensorflow backend.
:param waveform: Waveform to apply separation on.
:returns: Separated waveforms.
"""
if not waveform.shape[-1] == 2:
waveform = to_stereo(waveform)
predictor = self._get_predictor()
prediction = predictor({
'waveform': waveform,
'audio_id': audio_descriptor})
prediction.pop('audio_id')
return prediction
def _stft(self, data, inverse=False, length=None):
"""
Single entrypoint for both stft and istft. This computes stft and istft with librosa on stereo data. The two
channels are processed separately and are concatenated together in the result. The expected input formats are:
(n_samples, 2) for stft and (T, F, 2) for istft.
:param data: np.array with either the waveform or the complex spectrogram depending on the parameter inverse
:param inverse: should a stft or an istft be computed.
:return: Stereo data as numpy array for the transform. The channels are stored in the last dimension
"""
assert not (inverse and length is None)
data = np.asfortranarray(data)
N = self._params["frame_length"]
H = self._params["frame_step"]
win = hann(N, sym=False)
fstft = istft if inverse else stft
win_len_arg = {"win_length": None, "length": length} if inverse else {"n_fft": N}
n_channels = data.shape[-1]
out = []
for c in range(n_channels):
d = data[:, :, c].T if inverse else data[:, c]
s = fstft(d, hop_length=H, window=win, center=False, **win_len_arg)
s = np.expand_dims(s.T, 2-inverse)
out.append(s)
if len(out) == 1:
return out[0]
return np.concatenate(out, axis=2-inverse)
def _get_input_provider(self):
if self._input_provider is None:
self._input_provider = InputProviderFactory.get(self._params)
return self._input_provider
def _get_features(self):
if self._features is None:
self._features = self._get_input_provider().get_input_dict_placeholders()
return self._features
def _get_builder(self):
if self._builder is None:
self._builder = EstimatorSpecBuilder(self._get_features(), self._params)
return self._builder
def _get_session(self):
if self._session is None:
saver = tf.train.Saver()
latest_checkpoint = tf.train.latest_checkpoint(get_default_model_dir(self._params['model_dir']))
self._session = tf.Session()
saver.restore(self._session, latest_checkpoint)
return self._session
def _separate_librosa(self, waveform, audio_id):
"""
Performs separation with librosa backend for STFT.
"""
with self._tf_graph.as_default():
out = {}
features = self._get_features()
# TODO: fix the logic, build sometimes return, sometimes set attribute
outputs = self._get_builder().outputs
stft = self._stft(waveform)
if stft.shape[-1] == 1:
stft = np.concatenate([stft, stft], axis=-1)
elif stft.shape[-1] > 2:
stft = stft[:, :2]
sess = self._get_session()
outputs = sess.run(outputs, feed_dict=self._get_input_provider().get_feed_dict(features, stft, audio_id))
for inst in self._get_builder().instruments:
out[inst] = self._stft(outputs[inst], inverse=True, length=waveform.shape[0])
return out
def separate(self, waveform, audio_descriptor=""):
""" Performs separation on a waveform.
:param waveform: Waveform to be separated (as a numpy array)
:param audio_descriptor: (Optional) string describing the waveform (e.g. filename).
"""
if self._params["stft_backend"] == "tensorflow":
return self._separate_tensorflow(waveform, audio_descriptor)
else:
return self._separate_librosa(waveform, audio_descriptor)
def separate_to_file(
self, audio_descriptor, destination,
audio_adapter=get_default_audio_adapter(),
offset=0, duration=600., codec='wav', bitrate='128k',
filename_format='{filename}/{instrument}.{codec}',
synchronous=True):
""" Performs source separation and export result to file using
given audio adapter.
Filename format should be a Python formattable string that could use
following parameters : {instrument}, {filename}, {foldername} and {codec}.
:param audio_descriptor: Describe song to separate, used by audio
adapter to retrieve and load audio data,
in case of file based audio adapter, such
descriptor would be a file path.
:param destination: Target directory to write output to.
:param audio_adapter: (Optional) Audio adapter to use for I/O.
:param offset: (Optional) Offset of loaded song.
:param duration: (Optional) Duration of loaded song (default:
600s).
:param codec: (Optional) Export codec.
:param bitrate: (Optional) Export bitrate.
:param filename_format: (Optional) Filename format.
:param synchronous: (Optional) True is should by synchronous.
"""
waveform, sample_rate = audio_adapter.load(
audio_descriptor,
offset=offset,
duration=duration,
sample_rate=self._sample_rate)
sources = self.separate(waveform, audio_descriptor)
self.save_to_file( sources, audio_descriptor, destination,
filename_format, codec, audio_adapter,
bitrate, synchronous)
def save_to_file(
self, sources, audio_descriptor, destination,
filename_format='{filename}/{instrument}.{codec}',
codec='wav', audio_adapter=get_default_audio_adapter(),
bitrate='128k', synchronous=True):
""" export dictionary of sources to files.
:param sources: Dictionary of sources to be exported. The
keys are the name of the instruments, and
the values are Nx2 numpy arrays containing
the corresponding intrument waveform, as
returned by the separate method
:param audio_descriptor: Describe song to separate, used by audio
adapter to retrieve and load audio data,
in case of file based audio adapter, such
descriptor would be a file path.
:param destination: Target directory to write output to.
:param filename_format: (Optional) Filename format.
:param codec: (Optional) Export codec.
:param audio_adapter: (Optional) Audio adapter to use for I/O.
:param bitrate: (Optional) Export bitrate.
:param synchronous: (Optional) True is should by synchronous.
"""
foldername = basename(dirname(audio_descriptor))
filename = splitext(basename(audio_descriptor))[0]
generated = []
for instrument, data in sources.items():
path = join(destination, filename_format.format(
filename=filename,
instrument=instrument,
foldername=foldername,
codec=codec,
))
directory = os.path.dirname(path)
if not os.path.exists(directory):
os.makedirs(directory)
if path in generated:
raise SpleeterError((
f'Separated source path conflict : {path},'
'please check your filename format'))
generated.append(path)
if self._pool:
task = self._pool.apply_async(audio_adapter.save, (
path,
data,
self._sample_rate,
codec,
bitrate))
self._tasks.append(task)
else:
audio_adapter.save(path, data, self._sample_rate, codec, bitrate)
if synchronous and self._pool:
self.join()