mirror of
https://github.com/YuzuZensai/spleeter.git
synced 2026-01-06 04:32:43 +00:00
145 lines
5.2 KiB
Python
145 lines
5.2 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf8
|
|
|
|
"""
|
|
Module that provides a class wrapper for source separation.
|
|
|
|
:Example:
|
|
|
|
>>> from spleeter.separator import Separator
|
|
>>> separator = Separator('spleeter:2stems')
|
|
>>> separator.separate(waveform, lambda instrument, data: ...)
|
|
>>> separator.separate_to_file(...)
|
|
"""
|
|
|
|
import os
|
|
import json
|
|
|
|
from functools import partial
|
|
from multiprocessing import Pool
|
|
from pathlib import Path
|
|
from os.path import basename, join
|
|
|
|
from . import SpleeterError
|
|
from .audio.adapter import get_default_audio_adapter
|
|
from .audio.convertor import to_stereo
|
|
from .model import model_fn
|
|
from .utils.configuration import load_configuration
|
|
from .utils.estimator import create_estimator, to_predictor
|
|
|
|
__email__ = 'research@deezer.com'
|
|
__author__ = 'Deezer Research'
|
|
__license__ = 'MIT License'
|
|
|
|
|
|
class Separator(object):
|
|
""" A wrapper class for performing separation. """
|
|
|
|
def __init__(self, params_descriptor, MWF=False):
|
|
""" Default constructor.
|
|
|
|
:param params_descriptor: Descriptor for TF params to be used.
|
|
:param MWF: (Optional) True if MWF should be used, False otherwise.
|
|
"""
|
|
self._params = load_configuration(params_descriptor)
|
|
self._sample_rate = self._params['sample_rate']
|
|
self._MWF = MWF
|
|
self._predictor = None
|
|
self._pool = Pool()
|
|
self._tasks = []
|
|
|
|
def _get_predictor(self):
|
|
""" Lazy loading access method for internal predictor instance.
|
|
|
|
:returns: Predictor to use for source separation.
|
|
"""
|
|
if self._predictor is None:
|
|
estimator = create_estimator(self._params, self._MWF)
|
|
self._predictor = to_predictor(estimator)
|
|
return self._predictor
|
|
|
|
def join(self, timeout=200):
|
|
""" Wait for all pending tasks to be finished.
|
|
|
|
:param timeout: (Optional) task waiting timeout.
|
|
"""
|
|
while len(self._tasks) > 0:
|
|
task = self._tasks.pop()
|
|
task.get()
|
|
task.wait(timeout=timeout)
|
|
|
|
def separate(self, waveform):
|
|
""" Performs source separation over the given waveform.
|
|
|
|
The separation is performed synchronously but the result
|
|
processing is done asynchronously, allowing for instance
|
|
to export audio in parallel (through multiprocessing).
|
|
|
|
Given result is passed by to the given consumer, which will
|
|
be waited for task finishing if synchronous flag is True.
|
|
|
|
:param waveform: Waveform to apply separation on.
|
|
:returns: Separated waveforms.
|
|
"""
|
|
if not waveform.shape[-1] == 2:
|
|
waveform = to_stereo(waveform)
|
|
predictor = self._get_predictor()
|
|
prediction = predictor({
|
|
'waveform': waveform,
|
|
'audio_id': ''})
|
|
prediction.pop('audio_id')
|
|
return prediction
|
|
|
|
def separate_to_file(
|
|
self, audio_descriptor, destination,
|
|
audio_adapter=get_default_audio_adapter(),
|
|
offset=0, duration=600., codec='wav', bitrate='128k',
|
|
filename_format='{filename}/{instrument}.{codec}',
|
|
synchronous=True):
|
|
""" Performs source separation and export result to file using
|
|
given audio adapter.
|
|
|
|
Filename format should be a Python formattable string that could use
|
|
following parameters : {instrument}, {filename} and {codec}.
|
|
|
|
:param audio_descriptor: Describe song to separate, used by audio
|
|
adapter to retrieve and load audio data,
|
|
in case of file based audio adapter, such
|
|
descriptor would be a file path.
|
|
:param destination: Target directory to write output to.
|
|
:param audio_adapter: (Optional) Audio adapter to use for I/O.
|
|
:param offset: (Optional) Offset of loaded song.
|
|
:param duration: (Optional) Duration of loaded song.
|
|
:param codec: (Optional) Export codec.
|
|
:param bitrate: (Optional) Export bitrate.
|
|
:param filename_format: (Optional) Filename format.
|
|
:param synchronous: (Optional) True is should by synchronous.
|
|
"""
|
|
waveform, _ = audio_adapter.load(
|
|
audio_descriptor,
|
|
offset=offset,
|
|
duration=duration,
|
|
sample_rate=self._sample_rate)
|
|
sources = self.separate(waveform)
|
|
filename = basename(audio_descriptor)
|
|
generated = []
|
|
for instrument, data in sources.items():
|
|
path = join(destination, filename_format.format(
|
|
filename=filename,
|
|
instrument=instrument,
|
|
codec=codec))
|
|
if path in generated:
|
|
raise SpleeterError((
|
|
f'Separated source path conflict : {path},'
|
|
'please check your filename format'))
|
|
generated.append(path)
|
|
task = self._pool.apply_async(audio_adapter.save, (
|
|
path,
|
|
data,
|
|
self._sample_rate,
|
|
codec,
|
|
bitrate))
|
|
self._tasks.append(task)
|
|
if synchronous:
|
|
self.join()
|