Files
spleeter/tests/test_eval.py

96 lines
2.7 KiB
Python

#!/usr/bin/env python
# coding: utf8
""" Unit testing for Separator class. """
__email__ = 'research@deezer.com'
__author__ = 'Deezer Research'
__license__ = 'MIT License'
import filecmp
import itertools
from os import makedirs
from os.path import splitext, basename, exists, join
from tempfile import TemporaryDirectory
import pytest
import numpy as np
import tensorflow as tf
from spleeter.audio.adapter import get_default_audio_adapter
from spleeter.commands import create_argument_parser
from spleeter.commands import evaluate
from spleeter.utils.configuration import load_configuration
res_4stems = { "vocals": {
"SDR": -0.007,
"SAR": -19.231,
"SIR": -4.528,
"ISR": 0.000
},
"drums": {
"SDR": -0.071,
"SAR": -14.496,
"SIR": -4.987,
"ISR": 0.001
},
"bass":{
"SDR": -0.001,
"SAR": -12.426,
"SIR": -7.198,
"ISR": -0.001
},
"other":{
"SDR": -1.453,
"SAR": -14.899,
"SIR": -4.678,
"ISR": -0.015
}
}
def generate_fake_eval_dataset(path):
"""
generate fake evaluation dataset
"""
aa = get_default_audio_adapter()
n_songs = 2
fs = 44100
duration = 3
n_channels = 2
rng = np.random.RandomState(seed=0)
for song in range(n_songs):
song_path = join(path, "test", f"song{song}")
makedirs(song_path, exist_ok=True)
for instr in ["mixture", "vocals", "bass", "drums", "other"]:
filename = join(song_path, f"{instr}.wav")
data = rng.rand(duration*fs, n_channels)-0.5
aa.save(filename, data, fs)
def test_evaluate():
"""
test evaluate command
"""
with TemporaryDirectory() as path:
# generate fake dataset
generate_fake_eval_dataset(path)
# set up arguments of command
p = create_argument_parser()
arguments = p.parse_args(["evaluate", "-p", "spleeter:4stems", "--mus_dir", path])
params = load_configuration(arguments.configuration)
# run evaluation
metrics = evaluate.entrypoint(arguments, params)
# assert that the metric as not changed compared to reference value
# (Note that this fails with tensorflow backend)
for instrument, metric in metrics.items():
for metric, value in metric.items():
assert np.allclose(np.median(value), res_4stems[instrument][metric], atol=1e-3)