Adding option to use librosa backend.

Changes in the EstimatorBuilder to set attributes instead of returning tensors for the _build methods.
InputProvider classes to handle the different backend cases.
New method in Separator.
This commit is contained in:
akhlif
2020-02-26 16:31:24 +01:00
parent aa7c208b39
commit fe4634afa6
5 changed files with 232 additions and 124 deletions

View File

@@ -20,14 +20,15 @@ from multiprocessing import Pool
from os.path import basename, join, splitext
import numpy as np
import tensorflow as tf
from librosa.core import stft, istft
from scipy.signal.windows import hann
from . import SpleeterError
from .audio.adapter import get_default_audio_adapter
from .audio.convertor import to_stereo
from .utils.configuration import load_configuration
from .utils.estimator import create_estimator, to_predictor, get_input_dict_placeholders, get_default_model_dir
from .model import EstimatorSpecBuilder
from .utils.estimator import create_estimator, to_predictor, get_default_model_dir
from .model import EstimatorSpecBuilder, InputProviderFactory
__email__ = 'research@deezer.com'
@@ -41,7 +42,7 @@ logger = logging.getLogger("spleeter")
class Separator(object):
""" A wrapper class for performing separation. """
def __init__(self, params_descriptor, MWF=False, multiprocess=True):
def __init__(self, params_descriptor, MWF=False, stft_backend="auto", multiprocess=True):
""" Default constructor.
:param params_descriptor: Descriptor for TF params to be used.
@@ -53,6 +54,7 @@ class Separator(object):
self._predictor = None
self._pool = Pool() if multiprocess else None
self._tasks = []
self._params["stft_backend"] = stft_backend
def _get_predictor(self):
""" Lazy loading access method for internal predictor instance.
@@ -120,60 +122,41 @@ class Separator(object):
assert chunk_size % d == 0
return chunk_size//d
def separate_chunked(self, waveform, sample_rate, chunk_max_duration):
chunk_size = self.get_valid_chunk_size(sample_rate, chunk_max_duration)
print(f"chunk size is {chunk_size}")
batch_size = self.get_batch_size_for_chunk_size(chunk_size)
print(f"batch size {batch_size}")
T, F = self._params["T"], self._params["F"]
def stft(self, waveform, inverse=False):
N = self._params["frame_length"]
H = self._params["frame_step"]
win = hann(N, sym=False)
fstft = istft if inverse else stft
win_len_arg = "win_length" if inverse else "n_fft"
s1 = fstft(waveform[:, 0], hop_length=H, window=win, center=False, **{win_len_arg: N})
s2 = fstft(waveform[:, 1], hop_length=H, window=win, center=False, **{win_len_arg: N})
s1 = np.expand_dims(s1.T, 2-inverse)
s2 = np.expand_dims(s2.T, 2-inverse)
return np.concatenate([s1, s2], axis=2-inverse)
def separate_librosa(self, waveform, audio_id):
out = {}
n_batches = (waveform.shape[0]+batch_size*T*F-1)//(batch_size*T*F)
print(f"{n_batches} to compute")
features = get_input_dict_placeholders(self._params)
spectrogram_input_t = tf.placeholder(tf.float32, shape=(None, T, F, 2), name="spectrogram_input")
istft_input_t = tf.placeholder(tf.complex64, shape=(None, F, 2), name="istft_input")
start_t = tf.placeholder(tf.int32, shape=(), name="start")
end_t = tf.placeholder(tf.int32, shape=(), name="end")
input_provider = InputProviderFactory.get(self._params)
features = input_provider.get_input_dict_placeholders()
builder = EstimatorSpecBuilder(features, self._params)
latest_checkpoint = tf.train.latest_checkpoint(get_default_model_dir(self._params['model_dir']))
# TODO: fix the logic, build sometimes return, sometimes set attribute
builder._build_stft_feature()
stft_t = builder.get_stft_feature()
output_dict_t = builder._build_output_dict(input_tensor=spectrogram_input_t)
masked_stft_t = builder._build_masked_stft(builder._build_masks(output_dict_t),
input_stft=stft_t[start_t:end_t, :, :])
output_waveform_t = builder._inverse_stft(istft_input_t)
waveform_t = features["waveform"]
masked_stfts = {}
outputs = builder.outputs
saver = tf.train.Saver()
stft = self.stft(waveform)
with tf.Session() as sess:
print("restoring weights {}".format(time()))
saver.restore(sess, latest_checkpoint)
print("computing spectrogram {}".format(time()))
spectrogram, stft = sess.run([builder.get_spectrogram_feature(), stft_t], feed_dict={waveform_t: waveform})
print(spectrogram.shape)
print(stft.shape)
for i in range(n_batches):
print("computing batch {} {}".format(i, time()))
start = i*batch_size
end = (i+1)*batch_size
tmp = sess.run(masked_stft_t,
feed_dict={spectrogram_input_t: spectrogram[start:end, ...],
start_t: start*T, end_t: end*T, stft_t: stft})
for instrument, masked_stft in tmp.items():
masked_stfts.setdefault(instrument, []).append(masked_stft)
print("inverting spectrogram {}".format(time()))
for instrument, masked_stft in masked_stfts.items():
out[instrument] = sess.run(output_waveform_t, {istft_input_t: np.concatenate(masked_stft, axis=0)})
print("done separating {}".format(time()))
outputs = sess.run(outputs, feed_dict=input_provider.get_feed_dict(features, stft, audio_id))
for inst in builder.instruments:
out[inst] = self.stft(outputs[inst], inverse=True)
return out
def separate_to_file(
self, audio_descriptor, destination,
audio_adapter=get_default_audio_adapter(), chunk_duration=-1,
audio_adapter=get_default_audio_adapter(),
offset=0, duration=600., codec='wav', bitrate='128k',
filename_format='{filename}/{instrument}.{codec}',
synchronous=True):
@@ -198,15 +181,15 @@ class Separator(object):
:param filename_format: (Optional) Filename format.
:param synchronous: (Optional) True is should by synchronous.
"""
print("loading audio {}".format(time()))
waveform, sample_rate = audio_adapter.load(
audio_descriptor,
offset=offset,
duration=duration,
sample_rate=self._sample_rate)
print("done loading audio {}".format(time()))
sources = self.separate_chunked(waveform, sample_rate, chunk_duration)
print("saving to file {}".format(time()))
if self._params["stft_backend"] == "tensorflow":
sources = self.separate(waveform)
else:
sources = self.separate_librosa(waveform, audio_descriptor)
self.save_to_file(sources, audio_descriptor, destination, filename_format, codec,
audio_adapter, bitrate, synchronous)