mirror of
https://github.com/YuzuZensai/spleeter.git
synced 2026-01-31 14:58:23 +00:00
Merge pull request #319 from deezer/fix_multiple_call_to_separate
Fix multiple call to Separator.separate by instantiating the tensorflow graph only once in the methods.
This commit is contained in:
@@ -61,6 +61,9 @@ class Separator(object):
|
|||||||
self._sample_rate = self._params['sample_rate']
|
self._sample_rate = self._params['sample_rate']
|
||||||
self._MWF = MWF
|
self._MWF = MWF
|
||||||
self._predictor = None
|
self._predictor = None
|
||||||
|
self._input_provider = None
|
||||||
|
self._builder = None
|
||||||
|
self._features = None
|
||||||
self._pool = Pool() if multiprocess else None
|
self._pool = Pool() if multiprocess else None
|
||||||
self._tasks = []
|
self._tasks = []
|
||||||
self._params["stft_backend"] = get_backend(stft_backend)
|
self._params["stft_backend"] = get_backend(stft_backend)
|
||||||
@@ -128,19 +131,33 @@ class Separator(object):
|
|||||||
return out[0]
|
return out[0]
|
||||||
return np.concatenate(out, axis=2-inverse)
|
return np.concatenate(out, axis=2-inverse)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_input_provider(self):
|
||||||
|
if self._input_provider is None:
|
||||||
|
self._input_provider = InputProviderFactory.get(self._params)
|
||||||
|
return self._input_provider
|
||||||
|
|
||||||
|
def _get_features(self):
|
||||||
|
if self._features is None:
|
||||||
|
self._features = self._get_input_provider().get_input_dict_placeholders()
|
||||||
|
return self._features
|
||||||
|
|
||||||
|
def _get_builder(self):
|
||||||
|
if self._builder is None:
|
||||||
|
self._builder = EstimatorSpecBuilder(self._get_features(), self._params)
|
||||||
|
return self._builder
|
||||||
|
|
||||||
def _separate_librosa(self, waveform, audio_id):
|
def _separate_librosa(self, waveform, audio_id):
|
||||||
"""
|
"""
|
||||||
Performs separation with librosa backend for STFT.
|
Performs separation with librosa backend for STFT.
|
||||||
"""
|
"""
|
||||||
out = {}
|
out = {}
|
||||||
input_provider = InputProviderFactory.get(self._params)
|
features = self._get_features()
|
||||||
features = input_provider.get_input_dict_placeholders()
|
|
||||||
|
|
||||||
builder = EstimatorSpecBuilder(features, self._params)
|
|
||||||
latest_checkpoint = tf.train.latest_checkpoint(get_default_model_dir(self._params['model_dir']))
|
latest_checkpoint = tf.train.latest_checkpoint(get_default_model_dir(self._params['model_dir']))
|
||||||
|
|
||||||
# TODO: fix the logic, build sometimes return, sometimes set attribute
|
# TODO: fix the logic, build sometimes return, sometimes set attribute
|
||||||
outputs = builder.outputs
|
outputs = self._get_builder().outputs
|
||||||
stft = self._stft(waveform)
|
stft = self._stft(waveform)
|
||||||
if stft.shape[-1] == 1:
|
if stft.shape[-1] == 1:
|
||||||
stft = np.concatenate([stft, stft], axis=-1)
|
stft = np.concatenate([stft, stft], axis=-1)
|
||||||
@@ -150,8 +167,8 @@ class Separator(object):
|
|||||||
saver = tf.train.Saver()
|
saver = tf.train.Saver()
|
||||||
with tf.Session() as sess:
|
with tf.Session() as sess:
|
||||||
saver.restore(sess, latest_checkpoint)
|
saver.restore(sess, latest_checkpoint)
|
||||||
outputs = sess.run(outputs, feed_dict=input_provider.get_feed_dict(features, stft, audio_id))
|
outputs = sess.run(outputs, feed_dict=self._get_input_provider().get_feed_dict(features, stft, audio_id))
|
||||||
for inst in builder.instruments:
|
for inst in self._get_builder().instruments:
|
||||||
out[inst] = self._stft(outputs[inst], inverse=True, length=waveform.shape[0])
|
out[inst] = self._stft(outputs[inst], inverse=True, length=waveform.shape[0])
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user