mirror of
https://github.com/YuzuZensai/spleeter.git
synced 2026-01-30 20:24:31 +00:00
🐛 fix test
This commit is contained in:
@@ -7,107 +7,102 @@ __email__ = 'research@deezer.com'
|
||||
__author__ = 'Deezer Research'
|
||||
__license__ = 'MIT License'
|
||||
|
||||
import filecmp
|
||||
import itertools
|
||||
import json
|
||||
import os
|
||||
|
||||
from os import makedirs
|
||||
from os.path import splitext, basename, exists, join
|
||||
from os.path import join
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import json
|
||||
|
||||
import tensorflow as tf
|
||||
from spleeter.audio.adapter import AudioAdapter
|
||||
from spleeter.__main__ import spleeter
|
||||
from typer.testing import CliRunner
|
||||
|
||||
from spleeter.audio.adapter import get_default_audio_adapter
|
||||
from spleeter.commands import create_argument_parser
|
||||
|
||||
from spleeter.commands import train
|
||||
|
||||
from spleeter.utils.configuration import load_configuration
|
||||
|
||||
TRAIN_CONFIG = {
|
||||
"mix_name": "mix",
|
||||
"instrument_list": ["vocals", "other"],
|
||||
"sample_rate":44100,
|
||||
"frame_length":4096,
|
||||
"frame_step":1024,
|
||||
"T":128,
|
||||
"F":128,
|
||||
"n_channels":2,
|
||||
"chunk_duration":4,
|
||||
"n_chunks_per_song":1,
|
||||
"separation_exponent":2,
|
||||
"mask_extension":"zeros",
|
||||
"learning_rate": 1e-4,
|
||||
"batch_size":2,
|
||||
"train_max_steps": 10,
|
||||
"throttle_secs":20,
|
||||
"save_checkpoints_steps":100,
|
||||
"save_summary_steps":5,
|
||||
"random_seed":0,
|
||||
"model":{
|
||||
"type":"unet.unet",
|
||||
"params":{
|
||||
"conv_activation":"ELU",
|
||||
"deconv_activation":"ELU"
|
||||
'mix_name': 'mix',
|
||||
'instrument_list': ['vocals', 'other'],
|
||||
'sample_rate': 44100,
|
||||
'frame_length': 4096,
|
||||
'frame_step': 1024,
|
||||
'T': 128,
|
||||
'F': 128,
|
||||
'n_channels': 2,
|
||||
'chunk_duration': 4,
|
||||
'n_chunks_per_song': 1,
|
||||
'separation_exponent': 2,
|
||||
'mask_extension': 'zeros',
|
||||
'learning_rate': 1e-4,
|
||||
'batch_size': 2,
|
||||
'train_max_steps': 10,
|
||||
'throttle_secs': 20,
|
||||
'save_checkpoints_steps': 100,
|
||||
'save_summary_steps': 5,
|
||||
'random_seed': 0,
|
||||
'model': {
|
||||
'type': 'unet.unet',
|
||||
'params': {
|
||||
'conv_activation': 'ELU',
|
||||
'deconv_activation': 'ELU'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def generate_fake_training_dataset(path, instrument_list=["vocals", "other"]):
|
||||
def generate_fake_training_dataset(path, instrument_list=['vocals', 'other']):
|
||||
"""
|
||||
generates a fake training dataset in path:
|
||||
- generates audio files
|
||||
- generates a csv file describing the dataset
|
||||
"""
|
||||
aa = get_default_audio_adapter()
|
||||
aa = AudioAdapter.default()
|
||||
n_songs = 2
|
||||
fs = 44100
|
||||
duration = 6
|
||||
n_channels = 2
|
||||
rng = np.random.RandomState(seed=0)
|
||||
dataset_df = pd.DataFrame(columns=["mix_path"]+[f"{instr}_path" for instr in instrument_list]+["duration"])
|
||||
dataset_df = pd.DataFrame(
|
||||
columns=['mix_path'] + [
|
||||
f'{instr}_path' for instr in instrument_list] + ['duration'])
|
||||
for song in range(n_songs):
|
||||
song_path = join(path, "train", f"song{song}")
|
||||
song_path = join(path, 'train', f'song{song}')
|
||||
makedirs(song_path, exist_ok=True)
|
||||
dataset_df.loc[song, f"duration"] = duration
|
||||
for instr in instrument_list+["mix"]:
|
||||
filename = join(song_path, f"{instr}.wav")
|
||||
dataset_df.loc[song, f'duration'] = duration
|
||||
for instr in instrument_list+['mix']:
|
||||
filename = join(song_path, f'{instr}.wav')
|
||||
data = rng.rand(duration*fs, n_channels)-0.5
|
||||
aa.save(filename, data, fs)
|
||||
dataset_df.loc[song, f"{instr}_path"] = join("train", f"song{song}", f"{instr}.wav")
|
||||
|
||||
dataset_df.to_csv(join(path, "train", "train.csv"), index=False)
|
||||
|
||||
dataset_df.loc[song, f'{instr}_path'] = join(
|
||||
'train',
|
||||
f'song{song}',
|
||||
f'{instr}.wav')
|
||||
dataset_df.to_csv(join(path, 'train', 'train.csv'), index=False)
|
||||
|
||||
|
||||
def test_train():
|
||||
|
||||
|
||||
with TemporaryDirectory() as path:
|
||||
|
||||
# generate training dataset
|
||||
generate_fake_training_dataset(path)
|
||||
|
||||
# set training command aruments
|
||||
p = create_argument_parser()
|
||||
arguments = p.parse_args(["train", "-p", "useless_config.json", "-d", path])
|
||||
TRAIN_CONFIG["train_csv"] = join(path, "train", "train.csv")
|
||||
TRAIN_CONFIG["validation_csv"] = join(path, "train", "train.csv")
|
||||
TRAIN_CONFIG["model_dir"] = join(path, "model")
|
||||
TRAIN_CONFIG["training_cache"] = join(path, "cache", "training")
|
||||
TRAIN_CONFIG["validation_cache"] = join(path, "cache", "validation")
|
||||
|
||||
runner = CliRunner()
|
||||
TRAIN_CONFIG['train_csv'] = join(path, 'train', 'train.csv')
|
||||
TRAIN_CONFIG['validation_csv'] = join(path, 'train', 'train.csv')
|
||||
TRAIN_CONFIG['model_dir'] = join(path, 'model')
|
||||
TRAIN_CONFIG['training_cache'] = join(path, 'cache', 'training')
|
||||
TRAIN_CONFIG['validation_cache'] = join(path, 'cache', 'validation')
|
||||
with open('useless_config.json') as stream:
|
||||
json.dump(TRAIN_CONFIG, stream)
|
||||
# execute training
|
||||
res = train.entrypoint(arguments, TRAIN_CONFIG)
|
||||
|
||||
result = runner.invoke(spleeter, [
|
||||
'train',
|
||||
'-p', 'useless_config.json',
|
||||
'-d', path
|
||||
])
|
||||
assert result.exit_code == 0
|
||||
# assert that model checkpoint was created.
|
||||
assert os.path.exists(join(path,'model','model.ckpt-10.index'))
|
||||
assert os.path.exists(join(path,'model','checkpoint'))
|
||||
assert os.path.exists(join(path,'model','model.ckpt-0.meta'))
|
||||
|
||||
if __name__=="__main__":
|
||||
test_train()
|
||||
assert os.path.exists(join(path, 'model', 'model.ckpt-10.index'))
|
||||
assert os.path.exists(join(path, 'model', 'checkpoint'))
|
||||
assert os.path.exists(join(path, 'model', 'model.ckpt-0.meta'))
|
||||
|
||||
Reference in New Issue
Block a user