Added eval test for both backends

This commit is contained in:
romi1502
2020-07-24 15:02:34 +02:00
parent b03ef93be9
commit 3fcc4ea28f

View File

@@ -25,33 +25,64 @@ from spleeter.commands import evaluate
from spleeter.utils.configuration import load_configuration from spleeter.utils.configuration import load_configuration
res_4stems = { "vocals": { BACKENDS = ["tensorflow", "librosa"]
"SDR": -0.007, TEST_CONFIGURATIONS = {el:el for el in BACKENDS}
"SAR": -19.231,
"SIR": -4.528, res_4stems = {
"ISR": 0.000 "librosa": {
"vocals": {
"SDR": -0.007,
"SAR": -19.231,
"SIR": -4.528,
"ISR": 0.000
},
"drums": {
"SDR": -0.071,
"SAR": -14.496,
"SIR": -4.987,
"ISR": 0.001
},
"bass":{
"SDR": -0.001,
"SAR": -12.426,
"SIR": -7.198,
"ISR": -0.001
},
"other":{
"SDR": -1.453,
"SAR": -14.899,
"SIR": -4.678,
"ISR": -0.015
}
}, },
"drums": { "tensorflow": {
"SDR": -0.071, "vocals": {
"SAR": -14.496, "SDR": 3.25e-05,
"SIR": -4.987, "SAR": -11.153575,
"ISR": 0.001 "SIR": -1.3849,
}, "ISR": 2.75e-05
"bass":{ },
"SDR": -0.001, "drums": {
"SAR": -12.426, "SDR": -0.079505,
"SIR": -7.198, "SAR": -15.7073575,
"ISR": -0.001 "SIR": -4.972755,
}, "ISR": 0.0013575
"other":{ },
"SDR": -1.453, "bass":{
"SAR": -14.899, "SDR": 2.5e-06,
"SIR": -4.678, "SAR": -10.3520575,
"ISR": -0.015 "SIR": -4.272325,
"ISR": 2.5e-06
},
"other":{
"SDR": -1.359175,
"SAR": -14.7076775,
"SIR": -4.761505,
"ISR": -0.01528
}
} }
} }
def generate_fake_eval_dataset(path): def generate_fake_eval_dataset(path):
aa = get_default_audio_adapter() aa = get_default_audio_adapter()
n_songs = 2 n_songs = 2
@@ -68,12 +99,18 @@ def generate_fake_eval_dataset(path):
aa.save(filename, data, fs) aa.save(filename, data, fs)
def test_evaluate(path="FAKE_MUSDB_DIR"): @pytest.mark.parametrize('backend', TEST_CONFIGURATIONS)
generate_fake_eval_dataset(path) def test_evaluate(backend):
p = create_argument_parser() with TemporaryDirectory() as directory:
arguments = p.parse_args(["evaluate", "-p", "spleeter:4stems", "--mus_dir", path])
params = load_configuration(arguments.configuration) generate_fake_eval_dataset(directory)
metrics = evaluate.entrypoint(arguments, params) p = create_argument_parser()
for instrument, metric in metrics.items(): arguments = p.parse_args(["evaluate", "-p", "spleeter:4stems", "--mus_dir", directory, "-B", backend])
for metric, value in metric.items(): params = load_configuration(arguments.configuration)
assert np.allclose(np.median(value), res_4stems[instrument][metric], atol=1e-3) metrics = evaluate.entrypoint(arguments, params)
for instrument, metric in metrics.items():
for metric, value in metric.items():
assert np.allclose(np.median(value), res_4stems[backend][instrument][metric], atol=1e-3)
# test_evaluate("tensorflow")