mirror of
https://github.com/YuzuZensai/spleeter.git
synced 2026-01-31 14:58:23 +00:00
✨ add pyproject.toml for poetry transition
This commit is contained in:
@@ -1,4 +1,4 @@
|
|||||||
name: pytest
|
name: test
|
||||||
on:
|
on:
|
||||||
pull_request:
|
pull_request:
|
||||||
branches:
|
branches:
|
||||||
@@ -15,13 +15,6 @@ jobs:
|
|||||||
uses: actions/setup-python@v2
|
uses: actions/setup-python@v2
|
||||||
with:
|
with:
|
||||||
python-version: ${{ matrix.python-version }}
|
python-version: ${{ matrix.python-version }}
|
||||||
- uses: actions/cache@v2
|
|
||||||
id: spleeter-pip-cache
|
|
||||||
with:
|
|
||||||
path: ~/.cache/pip
|
|
||||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/setup.py') }}
|
|
||||||
restore-keys: |
|
|
||||||
${{ runner.os }}-pip-
|
|
||||||
- uses: actions/cache@v2
|
- uses: actions/cache@v2
|
||||||
env:
|
env:
|
||||||
model-release: 1
|
model-release: 1
|
||||||
@@ -31,11 +24,29 @@ jobs:
|
|||||||
key: models-${{ env.model-release }}
|
key: models-${{ env.model-release }}
|
||||||
restore-keys: |
|
restore-keys: |
|
||||||
models-${{ env.model-release }}
|
models-${{ env.model-release }}
|
||||||
- name: Install dependencies
|
- name: Install ffmpeg
|
||||||
run: |
|
run: |
|
||||||
sudo apt-get update && sudo apt-get install -y ffmpeg
|
sudo apt-get update && sudo apt-get install -y ffmpeg
|
||||||
pip install --upgrade pip setuptools
|
- name: Install Poetry
|
||||||
pip install pytest==5.4.3 pytest-xdist==1.32.0 pytest-forked==1.1.3 musdb museval
|
uses: dschep/install-poetry-action@v1.2
|
||||||
python setup.py install
|
- name: Cache Poetry virtualenv
|
||||||
|
uses: actions/cache@v1
|
||||||
|
id: cache
|
||||||
|
with:
|
||||||
|
path: ~/.virtualenvs
|
||||||
|
key: poetry-${{ hashFiles('**/poetry.lock') }}
|
||||||
|
restore-keys: |
|
||||||
|
poetry-${{ hashFiles('**/poetry.lock') }}
|
||||||
|
- name: Set Poetry config
|
||||||
|
run: |
|
||||||
|
poetry config settings.virtualenvs.in-project false
|
||||||
|
poetry config settings.virtualenvs.path ~/.virtualenvs
|
||||||
|
- name: Install Dependencies
|
||||||
|
run: poetry install
|
||||||
|
if: steps.cache.outputs.cache-hit != 'true'
|
||||||
|
- name: Code quality checks
|
||||||
|
run: |
|
||||||
|
poetry run black spleeter --check
|
||||||
|
poetry run isort spleeter --check
|
||||||
- name: Test with pytest
|
- name: Test with pytest
|
||||||
run: make test
|
run: poetry run pytest tests/
|
||||||
1931
poetry.lock
generated
Normal file
1931
poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
84
pyproject.toml
Normal file
84
pyproject.toml
Normal file
@@ -0,0 +1,84 @@
|
|||||||
|
[tool.poetry]
|
||||||
|
name = "spleeter"
|
||||||
|
version = "2.1.0"
|
||||||
|
description = "The Deezer source separation library with pretrained models based on tensorflow."
|
||||||
|
authors = ["Deezer Research <spleeter@deezer.com>"]
|
||||||
|
license = "MIT License"
|
||||||
|
readme = "README.md"
|
||||||
|
repository = "https://github.com/deezer/spleeter"
|
||||||
|
homepage = "https://github.com/deezer/spleeter"
|
||||||
|
classifiers = [
|
||||||
|
"Environment :: Console",
|
||||||
|
"Environment :: MacOS X",
|
||||||
|
"Intended Audience :: Developers",
|
||||||
|
"Intended Audience :: Information Technology",
|
||||||
|
"Intended Audience :: Science/Research",
|
||||||
|
"License :: OSI Approved :: MIT License",
|
||||||
|
"Natural Language :: English",
|
||||||
|
"Operating System :: MacOS",
|
||||||
|
"Operating System :: Microsoft :: Windows",
|
||||||
|
"Operating System :: POSIX :: Linux",
|
||||||
|
"Operating System :: Unix",
|
||||||
|
"Programming Language :: Python",
|
||||||
|
"Programming Language :: Python :: 3",
|
||||||
|
"Programming Language :: Python :: 3.6",
|
||||||
|
"Programming Language :: Python :: 3.7",
|
||||||
|
"Programming Language :: Python :: 3.8",
|
||||||
|
"Programming Language :: Python :: 3 :: Only",
|
||||||
|
"Programming Language :: Python :: Implementation :: CPython",
|
||||||
|
"Topic :: Artistic Software",
|
||||||
|
"Topic :: Multimedia",
|
||||||
|
"Topic :: Multimedia :: Sound/Audio",
|
||||||
|
"Topic :: Multimedia :: Sound/Audio :: Analysis",
|
||||||
|
"Topic :: Multimedia :: Sound/Audio :: Conversion",
|
||||||
|
"Topic :: Multimedia :: Sound/Audio :: Sound Synthesis",
|
||||||
|
"Topic :: Scientific/Engineering",
|
||||||
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||||
|
"Topic :: Scientific/Engineering :: Information Analysis",
|
||||||
|
"Topic :: Software Development",
|
||||||
|
"Topic :: Software Development :: Libraries",
|
||||||
|
"Topic :: Software Development :: Libraries :: Python Modules",
|
||||||
|
"Topic :: Utilities"
|
||||||
|
]
|
||||||
|
packages = [ { include = "spleeter" } ]
|
||||||
|
include = ["spleeter/resources/*.json"]
|
||||||
|
|
||||||
|
[tool.poetry.dependencies]
|
||||||
|
python = "^3.7"
|
||||||
|
ffmpeg-python = "0.2.0"
|
||||||
|
norbert = "0.2.1"
|
||||||
|
httpx = {extras = ["http2"], version = "^0.16.1"}
|
||||||
|
typer = "^0.3.2"
|
||||||
|
librosa = "0.8.0"
|
||||||
|
musdb = {version = "0.3.1", optional = true}
|
||||||
|
museval = {version = "0.3.0", optional = true}
|
||||||
|
tensorflow = "2.3.0"
|
||||||
|
pandas = "1.1.2"
|
||||||
|
numpy = "<1.19.0,>=1.16.0"
|
||||||
|
|
||||||
|
[tool.poetry.dev-dependencies]
|
||||||
|
pytest = "^6.2.1"
|
||||||
|
isort = "^5.7.0"
|
||||||
|
black = "^20.8b1"
|
||||||
|
mypy = "^0.790"
|
||||||
|
pytest-xdist = "^2.2.0"
|
||||||
|
pytest-forked = "^1.3.0"
|
||||||
|
musdb = "0.3.1"
|
||||||
|
museval = "0.3.0"
|
||||||
|
|
||||||
|
[tool.poetry.scripts]
|
||||||
|
spleeter = 'spleeter.__main__:entrypoint'
|
||||||
|
|
||||||
|
[tool.poetry.extras]
|
||||||
|
evaluation = ["musdb", "museval"]
|
||||||
|
|
||||||
|
[tool.isort]
|
||||||
|
profile = "black"
|
||||||
|
multi_line_output = 3
|
||||||
|
|
||||||
|
[tool.pytest.ini_options]
|
||||||
|
addopts = "-W ignore::FutureWarning -W ignore::DeprecationWarning -vv --forked"
|
||||||
|
|
||||||
|
[build-system]
|
||||||
|
requires = ["poetry-core>=1.0.0"]
|
||||||
|
build-backend = "poetry.core.masonry.api"
|
||||||
@@ -13,9 +13,9 @@
|
|||||||
by providing train, evaluation and source separation action.
|
by providing train, evaluation and source separation action.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
class SpleeterError(Exception):
|
class SpleeterError(Exception):
|
||||||
|
|||||||
@@ -13,21 +13,21 @@
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import json
|
import json
|
||||||
|
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from itertools import product
|
|
||||||
from glob import glob
|
from glob import glob
|
||||||
|
from itertools import product
|
||||||
from os.path import join
|
from os.path import join
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Container, Dict, List, Optional
|
from typing import Container, Dict, List, Optional
|
||||||
|
|
||||||
|
# pyright: reportMissingImports=false
|
||||||
|
# pylint: disable=import-error
|
||||||
|
from typer import Exit, Typer
|
||||||
|
|
||||||
from . import SpleeterError
|
from . import SpleeterError
|
||||||
from .options import *
|
from .options import *
|
||||||
from .utils.logging import configure_logger, logger
|
from .utils.logging import configure_logger, logger
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
|
||||||
# pylint: disable=import-error
|
|
||||||
from typer import Exit, Typer
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
spleeter: Typer = Typer(add_completion=False)
|
spleeter: Typer = Typer(add_completion=False)
|
||||||
@@ -36,21 +36,22 @@ spleeter: Typer = Typer(add_completion=False)
|
|||||||
|
|
||||||
@spleeter.command()
|
@spleeter.command()
|
||||||
def train(
|
def train(
|
||||||
adapter: str = AudioAdapterOption,
|
adapter: str = AudioAdapterOption,
|
||||||
data: Path = TrainingDataDirectoryOption,
|
data: Path = TrainingDataDirectoryOption,
|
||||||
params_filename: str = ModelParametersOption,
|
params_filename: str = ModelParametersOption,
|
||||||
verbose: bool = VerboseOption) -> None:
|
verbose: bool = VerboseOption,
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Train a source separation model
|
Train a source separation model
|
||||||
"""
|
"""
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
from .audio.adapter import AudioAdapter
|
from .audio.adapter import AudioAdapter
|
||||||
from .dataset import get_training_dataset, get_validation_dataset
|
from .dataset import get_training_dataset, get_validation_dataset
|
||||||
from .model import model_fn
|
from .model import model_fn
|
||||||
from .model.provider import ModelProvider
|
from .model.provider import ModelProvider
|
||||||
from .utils.configuration import load_configuration
|
from .utils.configuration import load_configuration
|
||||||
|
|
||||||
import tensorflow as tf
|
|
||||||
|
|
||||||
configure_logger(verbose)
|
configure_logger(verbose)
|
||||||
audio_adapter = AudioAdapter.get(adapter)
|
audio_adapter = AudioAdapter.get(adapter)
|
||||||
audio_path = str(data)
|
audio_path = str(data)
|
||||||
@@ -59,51 +60,49 @@ def train(
|
|||||||
session_config.gpu_options.per_process_gpu_memory_fraction = 0.45
|
session_config.gpu_options.per_process_gpu_memory_fraction = 0.45
|
||||||
estimator = tf.estimator.Estimator(
|
estimator = tf.estimator.Estimator(
|
||||||
model_fn=model_fn,
|
model_fn=model_fn,
|
||||||
model_dir=params['model_dir'],
|
model_dir=params["model_dir"],
|
||||||
params=params,
|
params=params,
|
||||||
config=tf.estimator.RunConfig(
|
config=tf.estimator.RunConfig(
|
||||||
save_checkpoints_steps=params['save_checkpoints_steps'],
|
save_checkpoints_steps=params["save_checkpoints_steps"],
|
||||||
tf_random_seed=params['random_seed'],
|
tf_random_seed=params["random_seed"],
|
||||||
save_summary_steps=params['save_summary_steps'],
|
save_summary_steps=params["save_summary_steps"],
|
||||||
session_config=session_config,
|
session_config=session_config,
|
||||||
log_step_count_steps=10,
|
log_step_count_steps=10,
|
||||||
keep_checkpoint_max=2))
|
keep_checkpoint_max=2,
|
||||||
|
),
|
||||||
|
)
|
||||||
input_fn = partial(get_training_dataset, params, audio_adapter, audio_path)
|
input_fn = partial(get_training_dataset, params, audio_adapter, audio_path)
|
||||||
train_spec = tf.estimator.TrainSpec(
|
train_spec = tf.estimator.TrainSpec(
|
||||||
input_fn=input_fn,
|
input_fn=input_fn, max_steps=params["train_max_steps"]
|
||||||
max_steps=params['train_max_steps'])
|
)
|
||||||
input_fn = partial(
|
input_fn = partial(get_validation_dataset, params, audio_adapter, audio_path)
|
||||||
get_validation_dataset,
|
|
||||||
params,
|
|
||||||
audio_adapter,
|
|
||||||
audio_path)
|
|
||||||
evaluation_spec = tf.estimator.EvalSpec(
|
evaluation_spec = tf.estimator.EvalSpec(
|
||||||
input_fn=input_fn,
|
input_fn=input_fn, steps=None, throttle_secs=params["throttle_secs"]
|
||||||
steps=None,
|
)
|
||||||
throttle_secs=params['throttle_secs'])
|
logger.info("Start model training")
|
||||||
logger.info('Start model training')
|
|
||||||
tf.estimator.train_and_evaluate(estimator, train_spec, evaluation_spec)
|
tf.estimator.train_and_evaluate(estimator, train_spec, evaluation_spec)
|
||||||
ModelProvider.writeProbe(params['model_dir'])
|
ModelProvider.writeProbe(params["model_dir"])
|
||||||
logger.info('Model training done')
|
logger.info("Model training done")
|
||||||
|
|
||||||
|
|
||||||
@spleeter.command()
|
@spleeter.command()
|
||||||
def separate(
|
def separate(
|
||||||
deprecated_files: Optional[str] = AudioInputOption,
|
deprecated_files: Optional[str] = AudioInputOption,
|
||||||
files: List[Path] = AudioInputArgument,
|
files: List[Path] = AudioInputArgument,
|
||||||
adapter: str = AudioAdapterOption,
|
adapter: str = AudioAdapterOption,
|
||||||
bitrate: str = AudioBitrateOption,
|
bitrate: str = AudioBitrateOption,
|
||||||
codec: Codec = AudioCodecOption,
|
codec: Codec = AudioCodecOption,
|
||||||
duration: float = AudioDurationOption,
|
duration: float = AudioDurationOption,
|
||||||
offset: float = AudioOffsetOption,
|
offset: float = AudioOffsetOption,
|
||||||
output_path: Path = AudioOutputOption,
|
output_path: Path = AudioOutputOption,
|
||||||
stft_backend: STFTBackend = AudioSTFTBackendOption,
|
stft_backend: STFTBackend = AudioSTFTBackendOption,
|
||||||
filename_format: str = FilenameFormatOption,
|
filename_format: str = FilenameFormatOption,
|
||||||
params_filename: str = ModelParametersOption,
|
params_filename: str = ModelParametersOption,
|
||||||
mwf: bool = MWFOption,
|
mwf: bool = MWFOption,
|
||||||
verbose: bool = VerboseOption) -> None:
|
verbose: bool = VerboseOption,
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Separate audio file(s)
|
Separate audio file(s)
|
||||||
"""
|
"""
|
||||||
from .audio.adapter import AudioAdapter
|
from .audio.adapter import AudioAdapter
|
||||||
from .separator import Separator
|
from .separator import Separator
|
||||||
@@ -111,14 +110,14 @@ def separate(
|
|||||||
configure_logger(verbose)
|
configure_logger(verbose)
|
||||||
if deprecated_files is not None:
|
if deprecated_files is not None:
|
||||||
logger.error(
|
logger.error(
|
||||||
'⚠️ -i option is not supported anymore, audio files must be supplied '
|
"⚠️ -i option is not supported anymore, audio files must be supplied "
|
||||||
'using input argument instead (see spleeter separate --help)')
|
"using input argument instead (see spleeter separate --help)"
|
||||||
|
)
|
||||||
raise Exit(20)
|
raise Exit(20)
|
||||||
audio_adapter: AudioAdapter = AudioAdapter.get(adapter)
|
audio_adapter: AudioAdapter = AudioAdapter.get(adapter)
|
||||||
separator: Separator = Separator(
|
separator: Separator = Separator(
|
||||||
params_filename,
|
params_filename, MWF=mwf, stft_backend=stft_backend
|
||||||
MWF=mwf,
|
)
|
||||||
stft_backend=stft_backend)
|
|
||||||
for filename in files:
|
for filename in files:
|
||||||
separator.separate_to_file(
|
separator.separate_to_file(
|
||||||
str(filename),
|
str(filename),
|
||||||
@@ -129,66 +128,73 @@ def separate(
|
|||||||
codec=codec,
|
codec=codec,
|
||||||
bitrate=bitrate,
|
bitrate=bitrate,
|
||||||
filename_format=filename_format,
|
filename_format=filename_format,
|
||||||
synchronous=False)
|
synchronous=False,
|
||||||
|
)
|
||||||
separator.join()
|
separator.join()
|
||||||
|
|
||||||
|
|
||||||
EVALUATION_SPLIT: str = 'test'
|
EVALUATION_SPLIT: str = "test"
|
||||||
EVALUATION_METRICS_DIRECTORY: str = 'metrics'
|
EVALUATION_METRICS_DIRECTORY: str = "metrics"
|
||||||
EVALUATION_INSTRUMENTS: Container[str] = ('vocals', 'drums', 'bass', 'other')
|
EVALUATION_INSTRUMENTS: Container[str] = ("vocals", "drums", "bass", "other")
|
||||||
EVALUATION_METRICS: Container[str] = ('SDR', 'SAR', 'SIR', 'ISR')
|
EVALUATION_METRICS: Container[str] = ("SDR", "SAR", "SIR", "ISR")
|
||||||
EVALUATION_MIXTURE: str = 'mixture.wav'
|
EVALUATION_MIXTURE: str = "mixture.wav"
|
||||||
EVALUATION_AUDIO_DIRECTORY: str = 'audio'
|
EVALUATION_AUDIO_DIRECTORY: str = "audio"
|
||||||
|
|
||||||
|
|
||||||
def _compile_metrics(metrics_output_directory) -> Dict:
|
def _compile_metrics(metrics_output_directory) -> Dict:
|
||||||
"""
|
"""
|
||||||
Compiles metrics from given directory and returns results as dict.
|
Compiles metrics from given directory and returns results as dict.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
metrics_output_directory (str):
|
metrics_output_directory (str):
|
||||||
Directory to get metrics from.
|
Directory to get metrics from.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Dict:
|
Dict:
|
||||||
Compiled metrics as dict.
|
Compiled metrics as dict.
|
||||||
"""
|
"""
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
songs = glob(join(metrics_output_directory, 'test/*.json'))
|
songs = glob(join(metrics_output_directory, "test/*.json"))
|
||||||
index = pd.MultiIndex.from_tuples(
|
index = pd.MultiIndex.from_tuples(
|
||||||
product(EVALUATION_INSTRUMENTS, EVALUATION_METRICS),
|
product(EVALUATION_INSTRUMENTS, EVALUATION_METRICS),
|
||||||
names=['instrument', 'metric'])
|
names=["instrument", "metric"],
|
||||||
pd.DataFrame([], index=['config1', 'config2'], columns=index)
|
)
|
||||||
|
pd.DataFrame([], index=["config1", "config2"], columns=index)
|
||||||
metrics = {
|
metrics = {
|
||||||
instrument: {k: [] for k in EVALUATION_METRICS}
|
instrument: {k: [] for k in EVALUATION_METRICS}
|
||||||
for instrument in EVALUATION_INSTRUMENTS}
|
for instrument in EVALUATION_INSTRUMENTS
|
||||||
|
}
|
||||||
for song in songs:
|
for song in songs:
|
||||||
with open(song, 'r') as stream:
|
with open(song, "r") as stream:
|
||||||
data = json.load(stream)
|
data = json.load(stream)
|
||||||
for target in data['targets']:
|
for target in data["targets"]:
|
||||||
instrument = target['name']
|
instrument = target["name"]
|
||||||
for metric in EVALUATION_METRICS:
|
for metric in EVALUATION_METRICS:
|
||||||
sdr_med = np.median([
|
sdr_med = np.median(
|
||||||
frame['metrics'][metric]
|
[
|
||||||
for frame in target['frames']
|
frame["metrics"][metric]
|
||||||
if not np.isnan(frame['metrics'][metric])])
|
for frame in target["frames"]
|
||||||
|
if not np.isnan(frame["metrics"][metric])
|
||||||
|
]
|
||||||
|
)
|
||||||
metrics[instrument][metric].append(sdr_med)
|
metrics[instrument][metric].append(sdr_med)
|
||||||
return metrics
|
return metrics
|
||||||
|
|
||||||
|
|
||||||
@spleeter.command()
|
@spleeter.command()
|
||||||
def evaluate(
|
def evaluate(
|
||||||
adapter: str = AudioAdapterOption,
|
adapter: str = AudioAdapterOption,
|
||||||
output_path: Path = AudioOutputOption,
|
output_path: Path = AudioOutputOption,
|
||||||
stft_backend: STFTBackend = AudioSTFTBackendOption,
|
stft_backend: STFTBackend = AudioSTFTBackendOption,
|
||||||
params_filename: str = ModelParametersOption,
|
params_filename: str = ModelParametersOption,
|
||||||
mus_dir: Path = MUSDBDirectoryOption,
|
mus_dir: Path = MUSDBDirectoryOption,
|
||||||
mwf: bool = MWFOption,
|
mwf: bool = MWFOption,
|
||||||
verbose: bool = VerboseOption) -> Dict:
|
verbose: bool = VerboseOption,
|
||||||
|
) -> Dict:
|
||||||
"""
|
"""
|
||||||
Evaluate a model on the musDB test dataset
|
Evaluate a model on the musDB test dataset
|
||||||
"""
|
"""
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@@ -197,42 +203,44 @@ def evaluate(
|
|||||||
import musdb
|
import musdb
|
||||||
import museval
|
import museval
|
||||||
except ImportError:
|
except ImportError:
|
||||||
logger.error('Extra dependencies musdb and museval not found')
|
logger.error("Extra dependencies musdb and museval not found")
|
||||||
logger.error('Please install musdb and museval first, abort')
|
logger.error("Please install musdb and museval first, abort")
|
||||||
raise Exit(10)
|
raise Exit(10)
|
||||||
# Separate musdb sources.
|
# Separate musdb sources.
|
||||||
songs = glob(join(mus_dir, EVALUATION_SPLIT, '*/'))
|
songs = glob(join(mus_dir, EVALUATION_SPLIT, "*/"))
|
||||||
mixtures = [join(song, EVALUATION_MIXTURE) for song in songs]
|
mixtures = [join(song, EVALUATION_MIXTURE) for song in songs]
|
||||||
audio_output_directory = join(output_path, EVALUATION_AUDIO_DIRECTORY)
|
audio_output_directory = join(output_path, EVALUATION_AUDIO_DIRECTORY)
|
||||||
separate(
|
separate(
|
||||||
deprecated_files=None,
|
deprecated_files=None,
|
||||||
files=mixtures,
|
files=mixtures,
|
||||||
adapter=adapter,
|
adapter=adapter,
|
||||||
bitrate='128k',
|
bitrate="128k",
|
||||||
codec=Codec.WAV,
|
codec=Codec.WAV,
|
||||||
duration=600.,
|
duration=600.0,
|
||||||
offset=0,
|
offset=0,
|
||||||
output_path=join(audio_output_directory, EVALUATION_SPLIT),
|
output_path=join(audio_output_directory, EVALUATION_SPLIT),
|
||||||
stft_backend=stft_backend,
|
stft_backend=stft_backend,
|
||||||
filename_format='{foldername}/{instrument}.{codec}',
|
filename_format="{foldername}/{instrument}.{codec}",
|
||||||
params_filename=params_filename,
|
params_filename=params_filename,
|
||||||
mwf=mwf,
|
mwf=mwf,
|
||||||
verbose=verbose)
|
verbose=verbose,
|
||||||
|
)
|
||||||
# Compute metrics with musdb.
|
# Compute metrics with musdb.
|
||||||
metrics_output_directory = join(output_path, EVALUATION_METRICS_DIRECTORY)
|
metrics_output_directory = join(output_path, EVALUATION_METRICS_DIRECTORY)
|
||||||
logger.info('Starting musdb evaluation (this could be long) ...')
|
logger.info("Starting musdb evaluation (this could be long) ...")
|
||||||
dataset = musdb.DB(root=mus_dir, is_wav=True, subsets=[EVALUATION_SPLIT])
|
dataset = musdb.DB(root=mus_dir, is_wav=True, subsets=[EVALUATION_SPLIT])
|
||||||
museval.eval_mus_dir(
|
museval.eval_mus_dir(
|
||||||
dataset=dataset,
|
dataset=dataset,
|
||||||
estimates_dir=audio_output_directory,
|
estimates_dir=audio_output_directory,
|
||||||
output_dir=metrics_output_directory)
|
output_dir=metrics_output_directory,
|
||||||
logger.info('musdb evaluation done')
|
)
|
||||||
|
logger.info("musdb evaluation done")
|
||||||
# Compute and pretty print median metrics.
|
# Compute and pretty print median metrics.
|
||||||
metrics = _compile_metrics(metrics_output_directory)
|
metrics = _compile_metrics(metrics_output_directory)
|
||||||
for instrument, metric in metrics.items():
|
for instrument, metric in metrics.items():
|
||||||
logger.info(f'{instrument}:')
|
logger.info(f"{instrument}:")
|
||||||
for metric, value in metric.items():
|
for metric, value in metric.items():
|
||||||
logger.info(f'{metric}: {np.median(value):.3f}')
|
logger.info(f"{metric}: {np.median(value):.3f}")
|
||||||
return metrics
|
return metrics
|
||||||
|
|
||||||
|
|
||||||
@@ -244,5 +252,5 @@ def entrypoint():
|
|||||||
logger.error(e)
|
logger.error(e)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == "__main__":
|
||||||
entrypoint()
|
entrypoint()
|
||||||
|
|||||||
@@ -12,28 +12,28 @@
|
|||||||
|
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
class Codec(str, Enum):
|
class Codec(str, Enum):
|
||||||
""" Enumeration of supported audio codec. """
|
""" Enumeration of supported audio codec. """
|
||||||
|
|
||||||
WAV: str = 'wav'
|
WAV: str = "wav"
|
||||||
MP3: str = 'mp3'
|
MP3: str = "mp3"
|
||||||
OGG: str = 'ogg'
|
OGG: str = "ogg"
|
||||||
M4A: str = 'm4a'
|
M4A: str = "m4a"
|
||||||
WMA: str = 'wma'
|
WMA: str = "wma"
|
||||||
FLAC: str = 'flac'
|
FLAC: str = "flac"
|
||||||
|
|
||||||
|
|
||||||
class STFTBackend(str, Enum):
|
class STFTBackend(str, Enum):
|
||||||
""" Enumeration of supported STFT backend. """
|
""" Enumeration of supported STFT backend. """
|
||||||
|
|
||||||
AUTO: str = 'auto'
|
AUTO: str = "auto"
|
||||||
TENSORFLOW: str = 'tensorflow'
|
TENSORFLOW: str = "tensorflow"
|
||||||
LIBROSA: str = 'librosa'
|
LIBROSA: str = "librosa"
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def resolve(cls: type, backend: str) -> str:
|
def resolve(cls: type, backend: str) -> str:
|
||||||
@@ -44,9 +44,9 @@ class STFTBackend(str, Enum):
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
if backend not in cls.__members__.values():
|
if backend not in cls.__members__.values():
|
||||||
raise ValueError(f'Unsupported backend {backend}')
|
raise ValueError(f"Unsupported backend {backend}")
|
||||||
if backend == cls.AUTO:
|
if backend == cls.AUTO:
|
||||||
if len(tf.config.list_physical_devices('GPU')):
|
if len(tf.config.list_physical_devices("GPU")):
|
||||||
return cls.TENSORFLOW
|
return cls.TENSORFLOW
|
||||||
return cls.LIBROSA
|
return cls.LIBROSA
|
||||||
return backend
|
return backend
|
||||||
|
|||||||
@@ -6,94 +6,98 @@
|
|||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from importlib import import_module
|
from importlib import import_module
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from spleeter.audio import Codec
|
|
||||||
from typing import Any, Dict, List, Optional, Union
|
from typing import Any, Dict, List, Optional, Union
|
||||||
|
|
||||||
from .. import SpleeterError
|
|
||||||
from ..types import AudioDescriptor, Signal
|
|
||||||
from ..utils.logging import logger
|
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from spleeter.audio import Codec
|
||||||
|
|
||||||
|
from .. import SpleeterError
|
||||||
|
from ..types import AudioDescriptor, Signal
|
||||||
|
from ..utils.logging import logger
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
class AudioAdapter(ABC):
|
class AudioAdapter(ABC):
|
||||||
""" An abstract class for manipulating audio signal. """
|
""" An abstract class for manipulating audio signal. """
|
||||||
|
|
||||||
_DEFAULT: 'AudioAdapter' = None
|
_DEFAULT: "AudioAdapter" = None
|
||||||
""" Default audio adapter singleton instance. """
|
""" Default audio adapter singleton instance. """
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def load(
|
def load(
|
||||||
self,
|
self,
|
||||||
audio_descriptor: AudioDescriptor,
|
audio_descriptor: AudioDescriptor,
|
||||||
offset: Optional[float] = None,
|
offset: Optional[float] = None,
|
||||||
duration: Optional[float] = None,
|
duration: Optional[float] = None,
|
||||||
sample_rate: Optional[float] = None,
|
sample_rate: Optional[float] = None,
|
||||||
dtype: np.dtype = np.float32) -> Signal:
|
dtype: np.dtype = np.float32,
|
||||||
|
) -> Signal:
|
||||||
"""
|
"""
|
||||||
Loads the audio file denoted by the given audio descriptor and
|
Loads the audio file denoted by the given audio descriptor and
|
||||||
returns it data as a waveform. Aims to be implemented by client.
|
returns it data as a waveform. Aims to be implemented by client.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
audio_descriptor (AudioDescriptor):
|
audio_descriptor (AudioDescriptor):
|
||||||
Describe song to load, in case of file based audio adapter,
|
Describe song to load, in case of file based audio adapter,
|
||||||
such descriptor would be a file path.
|
such descriptor would be a file path.
|
||||||
offset (Optional[float]):
|
offset (Optional[float]):
|
||||||
Start offset to load from in seconds.
|
Start offset to load from in seconds.
|
||||||
duration (Optional[float]):
|
duration (Optional[float]):
|
||||||
Duration to load in seconds.
|
Duration to load in seconds.
|
||||||
sample_rate (Optional[float]):
|
sample_rate (Optional[float]):
|
||||||
Sample rate to load audio with.
|
Sample rate to load audio with.
|
||||||
dtype (numpy.dtype):
|
dtype (numpy.dtype):
|
||||||
(Optional) Numpy data type to use, default to `float32`.
|
(Optional) Numpy data type to use, default to `float32`.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Signal:
|
Signal:
|
||||||
Loaded data as (wf, sample_rate) tuple.
|
Loaded data as (wf, sample_rate) tuple.
|
||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def load_tf_waveform(
|
def load_tf_waveform(
|
||||||
self,
|
self,
|
||||||
audio_descriptor,
|
audio_descriptor,
|
||||||
offset: float = 0.0,
|
offset: float = 0.0,
|
||||||
duration: float = 1800.,
|
duration: float = 1800.0,
|
||||||
sample_rate: int = 44100,
|
sample_rate: int = 44100,
|
||||||
dtype: bytes = b'float32',
|
dtype: bytes = b"float32",
|
||||||
waveform_name: str = 'waveform') -> Dict[str, Any]:
|
waveform_name: str = "waveform",
|
||||||
|
) -> Dict[str, Any]:
|
||||||
"""
|
"""
|
||||||
Load the audio and convert it to a tensorflow waveform.
|
Load the audio and convert it to a tensorflow waveform.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
audio_descriptor ():
|
audio_descriptor ():
|
||||||
Describe song to load, in case of file based audio adapter,
|
Describe song to load, in case of file based audio adapter,
|
||||||
such descriptor would be a file path.
|
such descriptor would be a file path.
|
||||||
offset (float):
|
offset (float):
|
||||||
Start offset to load from in seconds.
|
Start offset to load from in seconds.
|
||||||
duration (float):
|
duration (float):
|
||||||
Duration to load in seconds.
|
Duration to load in seconds.
|
||||||
sample_rate (float):
|
sample_rate (float):
|
||||||
Sample rate to load audio with.
|
Sample rate to load audio with.
|
||||||
dtype (bytes):
|
dtype (bytes):
|
||||||
(Optional)data type to use, default to `b'float32'`.
|
(Optional)data type to use, default to `b'float32'`.
|
||||||
waveform_name (str):
|
waveform_name (str):
|
||||||
(Optional) Name of the key in output dict, default to
|
(Optional) Name of the key in output dict, default to
|
||||||
`'waveform'`.
|
`'waveform'`.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Dict[str, Any]:
|
Dict[str, Any]:
|
||||||
TF output dict with waveform as `(T x chan numpy array)`
|
TF output dict with waveform as `(T x chan numpy array)`
|
||||||
and a boolean that tells whether there were an error while
|
and a boolean that tells whether there were an error while
|
||||||
trying to load the waveform.
|
trying to load the waveform.
|
||||||
"""
|
"""
|
||||||
# Cast parameters to TF format.
|
# Cast parameters to TF format.
|
||||||
offset = tf.cast(offset, tf.float64)
|
offset = tf.cast(offset, tf.float64)
|
||||||
@@ -101,94 +105,96 @@ class AudioAdapter(ABC):
|
|||||||
|
|
||||||
# Defined safe loading function.
|
# Defined safe loading function.
|
||||||
def safe_load(path, offset, duration, sample_rate, dtype):
|
def safe_load(path, offset, duration, sample_rate, dtype):
|
||||||
logger.info(
|
logger.info(f"Loading audio {path} from {offset} to {offset + duration}")
|
||||||
f'Loading audio {path} from {offset} to {offset + duration}')
|
|
||||||
try:
|
try:
|
||||||
(data, _) = self.load(
|
(data, _) = self.load(
|
||||||
path.numpy(),
|
path.numpy(),
|
||||||
offset.numpy(),
|
offset.numpy(),
|
||||||
duration.numpy(),
|
duration.numpy(),
|
||||||
sample_rate.numpy(),
|
sample_rate.numpy(),
|
||||||
dtype=dtype.numpy())
|
dtype=dtype.numpy(),
|
||||||
logger.info('Audio data loaded successfully')
|
)
|
||||||
|
logger.info("Audio data loaded successfully")
|
||||||
return (data, False)
|
return (data, False)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.exception(
|
logger.exception("An error occurs while loading audio", exc_info=e)
|
||||||
'An error occurs while loading audio',
|
|
||||||
exc_info=e)
|
|
||||||
return (np.float32(-1.0), True)
|
return (np.float32(-1.0), True)
|
||||||
|
|
||||||
# Execute function and format results.
|
# Execute function and format results.
|
||||||
results = tf.py_function(
|
results = (
|
||||||
safe_load,
|
tf.py_function(
|
||||||
[audio_descriptor, offset, duration, sample_rate, dtype],
|
safe_load,
|
||||||
(tf.float32, tf.bool)),
|
[audio_descriptor, offset, duration, sample_rate, dtype],
|
||||||
|
(tf.float32, tf.bool),
|
||||||
|
),
|
||||||
|
)
|
||||||
waveform, error = results[0]
|
waveform, error = results[0]
|
||||||
return {
|
return {waveform_name: waveform, f"{waveform_name}_error": error}
|
||||||
waveform_name: waveform,
|
|
||||||
f'{waveform_name}_error': error}
|
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def save(
|
def save(
|
||||||
self,
|
self,
|
||||||
path: Union[Path, str],
|
path: Union[Path, str],
|
||||||
data: np.ndarray,
|
data: np.ndarray,
|
||||||
sample_rate: float,
|
sample_rate: float,
|
||||||
codec: Codec = None,
|
codec: Codec = None,
|
||||||
bitrate: str = None) -> None:
|
bitrate: str = None,
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Save the given audio data to the file denoted by the given path.
|
Save the given audio data to the file denoted by the given path.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
path (Union[Path, str]):
|
path (Union[Path, str]):
|
||||||
Path like of the audio file to save data in.
|
Path like of the audio file to save data in.
|
||||||
data (numpy.ndarray):
|
data (numpy.ndarray):
|
||||||
Waveform data to write.
|
Waveform data to write.
|
||||||
sample_rate (float):
|
sample_rate (float):
|
||||||
Sample rate to write file in.
|
Sample rate to write file in.
|
||||||
codec ():
|
codec ():
|
||||||
(Optional) Writing codec to use, default to `None`.
|
(Optional) Writing codec to use, default to `None`.
|
||||||
bitrate (str):
|
bitrate (str):
|
||||||
(Optional) Bitrate of the written audio file, default to
|
(Optional) Bitrate of the written audio file, default to
|
||||||
`None`.
|
`None`.
|
||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def default(cls: type) -> 'AudioAdapter':
|
def default(cls: type) -> "AudioAdapter":
|
||||||
"""
|
"""
|
||||||
Builds and returns a default audio adapter instance.
|
Builds and returns a default audio adapter instance.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
AudioAdapter:
|
AudioAdapter:
|
||||||
Default adapter instance to use.
|
Default adapter instance to use.
|
||||||
"""
|
"""
|
||||||
if cls._DEFAULT is None:
|
if cls._DEFAULT is None:
|
||||||
from .ffmpeg import FFMPEGProcessAudioAdapter
|
from .ffmpeg import FFMPEGProcessAudioAdapter
|
||||||
|
|
||||||
cls._DEFAULT = FFMPEGProcessAudioAdapter()
|
cls._DEFAULT = FFMPEGProcessAudioAdapter()
|
||||||
return cls._DEFAULT
|
return cls._DEFAULT
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get(cls: type, descriptor: str) -> 'AudioAdapter':
|
def get(cls: type, descriptor: str) -> "AudioAdapter":
|
||||||
"""
|
"""
|
||||||
Load dynamically an AudioAdapter from given class descriptor.
|
Load dynamically an AudioAdapter from given class descriptor.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
descriptor (str):
|
descriptor (str):
|
||||||
Adapter class descriptor (module.Class)
|
Adapter class descriptor (module.Class)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
AudioAdapter:
|
AudioAdapter:
|
||||||
Created adapter instance.
|
Created adapter instance.
|
||||||
"""
|
"""
|
||||||
if not descriptor:
|
if not descriptor:
|
||||||
return cls.default()
|
return cls.default()
|
||||||
module_path: List[str] = descriptor.split('.')
|
module_path: List[str] = descriptor.split(".")
|
||||||
adapter_class_name: str = module_path[-1]
|
adapter_class_name: str = module_path[-1]
|
||||||
module_path: str = '.'.join(module_path[:-1])
|
module_path: str = ".".join(module_path[:-1])
|
||||||
adapter_module = import_module(module_path)
|
adapter_module = import_module(module_path)
|
||||||
adapter_class = getattr(adapter_module, adapter_class_name)
|
adapter_class = getattr(adapter_module, adapter_class_name)
|
||||||
if not issubclass(adapter_class, AudioAdapter):
|
if not issubclass(adapter_class, AudioAdapter):
|
||||||
raise SpleeterError(
|
raise SpleeterError(
|
||||||
f'{adapter_class_name} is not a valid AudioAdapter class')
|
f"{adapter_class_name} is not a valid AudioAdapter class"
|
||||||
|
)
|
||||||
return adapter_class()
|
return adapter_class()
|
||||||
|
|||||||
@@ -3,54 +3,54 @@
|
|||||||
|
|
||||||
""" This module provides audio data convertion functions. """
|
""" This module provides audio data convertion functions. """
|
||||||
|
|
||||||
from ..utils.tensor import from_float32_to_uint8, from_uint8_to_float32
|
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from ..utils.tensor import from_float32_to_uint8, from_uint8_to_float32
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
def to_n_channels(
|
def to_n_channels(waveform: tf.Tensor, n_channels: int) -> tf.Tensor:
|
||||||
waveform: tf.Tensor,
|
|
||||||
n_channels: int) -> tf.Tensor:
|
|
||||||
"""
|
"""
|
||||||
Convert a waveform to n_channels by removing or duplicating channels if
|
Convert a waveform to n_channels by removing or duplicating channels if
|
||||||
needed (in tensorflow).
|
needed (in tensorflow).
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
waveform (tensorflow.Tensor):
|
waveform (tensorflow.Tensor):
|
||||||
Waveform to transform.
|
Waveform to transform.
|
||||||
n_channels (int):
|
n_channels (int):
|
||||||
Number of channel to reshape waveform in.
|
Number of channel to reshape waveform in.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Reshaped waveform.
|
Reshaped waveform.
|
||||||
"""
|
"""
|
||||||
return tf.cond(
|
return tf.cond(
|
||||||
tf.shape(waveform)[1] >= n_channels,
|
tf.shape(waveform)[1] >= n_channels,
|
||||||
true_fn=lambda: waveform[:, :n_channels],
|
true_fn=lambda: waveform[:, :n_channels],
|
||||||
false_fn=lambda: tf.tile(waveform, [1, n_channels])[:, :n_channels])
|
false_fn=lambda: tf.tile(waveform, [1, n_channels])[:, :n_channels],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def to_stereo(waveform: np.ndarray) -> np.ndarray:
|
def to_stereo(waveform: np.ndarray) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Convert a waveform to stereo by duplicating if mono, or truncating
|
Convert a waveform to stereo by duplicating if mono, or truncating
|
||||||
if too many channels.
|
if too many channels.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
waveform (numpy.ndarray):
|
waveform (numpy.ndarray):
|
||||||
a `(N, d)` numpy array.
|
a `(N, d)` numpy array.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
numpy.ndarray:
|
numpy.ndarray:
|
||||||
A stereo waveform as a `(N, 1)` numpy array.
|
A stereo waveform as a `(N, 1)` numpy array.
|
||||||
"""
|
"""
|
||||||
if waveform.shape[1] == 1:
|
if waveform.shape[1] == 1:
|
||||||
return np.repeat(waveform, 2, axis=-1)
|
return np.repeat(waveform, 2, axis=-1)
|
||||||
@@ -61,82 +61,79 @@ def to_stereo(waveform: np.ndarray) -> np.ndarray:
|
|||||||
|
|
||||||
def gain_to_db(tensor: tf.Tensor, espilon: float = 10e-10) -> tf.Tensor:
|
def gain_to_db(tensor: tf.Tensor, espilon: float = 10e-10) -> tf.Tensor:
|
||||||
"""
|
"""
|
||||||
Convert from gain to decibel in tensorflow.
|
Convert from gain to decibel in tensorflow.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
tensor (tensorflow.Tensor):
|
tensor (tensorflow.Tensor):
|
||||||
Tensor to convert
|
Tensor to convert
|
||||||
epsilon (float):
|
epsilon (float):
|
||||||
Operation constant.
|
Operation constant.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Converted tensor.
|
Converted tensor.
|
||||||
"""
|
"""
|
||||||
return 20. / np.log(10) * tf.math.log(tf.maximum(tensor, espilon))
|
return 20.0 / np.log(10) * tf.math.log(tf.maximum(tensor, espilon))
|
||||||
|
|
||||||
|
|
||||||
def db_to_gain(tensor: tf.Tensor) -> tf.Tensor:
|
def db_to_gain(tensor: tf.Tensor) -> tf.Tensor:
|
||||||
"""
|
"""
|
||||||
Convert from decibel to gain in tensorflow.
|
Convert from decibel to gain in tensorflow.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
tensor (tensorflow.Tensor):
|
tensor (tensorflow.Tensor):
|
||||||
Tensor to convert
|
Tensor to convert
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Converted tensor.
|
Converted tensor.
|
||||||
"""
|
"""
|
||||||
return tf.pow(10., (tensor / 20.))
|
return tf.pow(10.0, (tensor / 20.0))
|
||||||
|
|
||||||
|
|
||||||
def spectrogram_to_db_uint(
|
def spectrogram_to_db_uint(
|
||||||
spectrogram: tf.Tensor,
|
spectrogram: tf.Tensor, db_range: float = 100.0, **kwargs
|
||||||
db_range: float = 100.,
|
) -> tf.Tensor:
|
||||||
**kwargs) -> tf.Tensor:
|
|
||||||
"""
|
"""
|
||||||
Encodes given spectrogram into uint8 using decibel scale.
|
Encodes given spectrogram into uint8 using decibel scale.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
spectrogram (tensorflow.Tensor):
|
spectrogram (tensorflow.Tensor):
|
||||||
Spectrogram to be encoded as TF float tensor.
|
Spectrogram to be encoded as TF float tensor.
|
||||||
db_range (float):
|
db_range (float):
|
||||||
Range in decibel for encoding.
|
Range in decibel for encoding.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Encoded decibel spectrogram as `uint8` tensor.
|
Encoded decibel spectrogram as `uint8` tensor.
|
||||||
"""
|
"""
|
||||||
db_spectrogram: tf.Tensor = gain_to_db(spectrogram)
|
db_spectrogram: tf.Tensor = gain_to_db(spectrogram)
|
||||||
max_db_spectrogram: tf.Tensor = tf.reduce_max(db_spectrogram)
|
max_db_spectrogram: tf.Tensor = tf.reduce_max(db_spectrogram)
|
||||||
db_spectrogram: tf.Tensor = tf.maximum(
|
db_spectrogram: tf.Tensor = tf.maximum(
|
||||||
db_spectrogram,
|
db_spectrogram, max_db_spectrogram - db_range
|
||||||
max_db_spectrogram - db_range)
|
)
|
||||||
return from_float32_to_uint8(db_spectrogram, **kwargs)
|
return from_float32_to_uint8(db_spectrogram, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
def db_uint_spectrogram_to_gain(
|
def db_uint_spectrogram_to_gain(
|
||||||
db_uint_spectrogram: tf.Tensor,
|
db_uint_spectrogram: tf.Tensor, min_db: tf.Tensor, max_db: tf.Tensor
|
||||||
min_db: tf.Tensor,
|
) -> tf.Tensor:
|
||||||
max_db: tf.Tensor) -> tf.Tensor:
|
|
||||||
"""
|
"""
|
||||||
Decode spectrogram from uint8 decibel scale.
|
Decode spectrogram from uint8 decibel scale.
|
||||||
|
|
||||||
Paramters:
|
Paramters:
|
||||||
db_uint_spectrogram (tensorflow.Tensor):
|
db_uint_spectrogram (tensorflow.Tensor):
|
||||||
Decibel spectrogram to decode.
|
Decibel spectrogram to decode.
|
||||||
min_db (tensorflow.Tensor):
|
min_db (tensorflow.Tensor):
|
||||||
Lower bound limit for decoding.
|
Lower bound limit for decoding.
|
||||||
max_db (tensorflow.Tensor):
|
max_db (tensorflow.Tensor):
|
||||||
Upper bound limit for decoding.
|
Upper bound limit for decoding.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Decoded spectrogram as `float32` tensor.
|
Decoded spectrogram as `float32` tensor.
|
||||||
"""
|
"""
|
||||||
db_spectrogram: tf.Tensor = from_uint8_to_float32(
|
db_spectrogram: tf.Tensor = from_uint8_to_float32(
|
||||||
db_uint_spectrogram,
|
db_uint_spectrogram, min_db, max_db
|
||||||
min_db,
|
)
|
||||||
max_db)
|
|
||||||
return db_to_gain(db_spectrogram)
|
return db_to_gain(db_spectrogram)
|
||||||
|
|||||||
@@ -11,86 +11,87 @@
|
|||||||
import datetime as dt
|
import datetime as dt
|
||||||
import os
|
import os
|
||||||
import shutil
|
import shutil
|
||||||
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, Optional, Union
|
from typing import Dict, Optional, Union
|
||||||
|
|
||||||
from . import Codec
|
|
||||||
from .adapter import AudioAdapter
|
|
||||||
from .. import SpleeterError
|
|
||||||
from ..types import Signal
|
|
||||||
from ..utils.logging import logger
|
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import ffmpeg
|
import ffmpeg
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
from .. import SpleeterError
|
||||||
|
from ..types import Signal
|
||||||
|
from ..utils.logging import logger
|
||||||
|
from . import Codec
|
||||||
|
from .adapter import AudioAdapter
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
class FFMPEGProcessAudioAdapter(AudioAdapter):
|
class FFMPEGProcessAudioAdapter(AudioAdapter):
|
||||||
"""
|
"""
|
||||||
An AudioAdapter implementation that use FFMPEG binary through
|
An AudioAdapter implementation that use FFMPEG binary through
|
||||||
subprocess in order to perform I/O operation for audio processing.
|
subprocess in order to perform I/O operation for audio processing.
|
||||||
|
|
||||||
When created, FFMPEG binary path will be checked and expended,
|
When created, FFMPEG binary path will be checked and expended,
|
||||||
raising exception if not found. Such path could be infered using
|
raising exception if not found. Such path could be infered using
|
||||||
`FFMPEG_PATH` environment variable.
|
`FFMPEG_PATH` environment variable.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
SUPPORTED_CODECS: Dict[Codec, str] = {
|
SUPPORTED_CODECS: Dict[Codec, str] = {
|
||||||
Codec.M4A: 'aac',
|
Codec.M4A: "aac",
|
||||||
Codec.OGG: 'libvorbis',
|
Codec.OGG: "libvorbis",
|
||||||
Codec.WMA: 'wmav2'
|
Codec.WMA: "wmav2",
|
||||||
}
|
}
|
||||||
""" FFMPEG codec name mapping. """
|
""" FFMPEG codec name mapping. """
|
||||||
|
|
||||||
def __init__(_) -> None:
|
def __init__(_) -> None:
|
||||||
"""
|
"""
|
||||||
Default constructor, ensure FFMPEG binaries are available.
|
Default constructor, ensure FFMPEG binaries are available.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
SpleeterError:
|
SpleeterError:
|
||||||
If ffmpeg or ffprobe is not found.
|
If ffmpeg or ffprobe is not found.
|
||||||
"""
|
"""
|
||||||
for binary in ('ffmpeg', 'ffprobe'):
|
for binary in ("ffmpeg", "ffprobe"):
|
||||||
if shutil.which(binary) is None:
|
if shutil.which(binary) is None:
|
||||||
raise SpleeterError('{} binary not found'.format(binary))
|
raise SpleeterError("{} binary not found".format(binary))
|
||||||
|
|
||||||
def load(
|
def load(
|
||||||
_,
|
_,
|
||||||
path: Union[Path, str],
|
path: Union[Path, str],
|
||||||
offset: Optional[float] = None,
|
offset: Optional[float] = None,
|
||||||
duration: Optional[float] = None,
|
duration: Optional[float] = None,
|
||||||
sample_rate: Optional[float] = None,
|
sample_rate: Optional[float] = None,
|
||||||
dtype: np.dtype = np.float32) -> Signal:
|
dtype: np.dtype = np.float32,
|
||||||
|
) -> Signal:
|
||||||
"""
|
"""
|
||||||
Loads the audio file denoted by the given path
|
Loads the audio file denoted by the given path
|
||||||
and returns it data as a waveform.
|
and returns it data as a waveform.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
path (Union[Path, str]:
|
path (Union[Path, str]:
|
||||||
Path of the audio file to load data from.
|
Path of the audio file to load data from.
|
||||||
offset (Optional[float]):
|
offset (Optional[float]):
|
||||||
Start offset to load from in seconds.
|
Start offset to load from in seconds.
|
||||||
duration (Optional[float]):
|
duration (Optional[float]):
|
||||||
Duration to load in seconds.
|
Duration to load in seconds.
|
||||||
sample_rate (Optional[float]):
|
sample_rate (Optional[float]):
|
||||||
Sample rate to load audio with.
|
Sample rate to load audio with.
|
||||||
dtype (numpy.dtype):
|
dtype (numpy.dtype):
|
||||||
(Optional) Numpy data type to use, default to `float32`.
|
(Optional) Numpy data type to use, default to `float32`.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Signal:
|
Signal:
|
||||||
Loaded data a (waveform, sample_rate) tuple.
|
Loaded data a (waveform, sample_rate) tuple.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
SpleeterError:
|
SpleeterError:
|
||||||
If any error occurs while loading audio.
|
If any error occurs while loading audio.
|
||||||
"""
|
"""
|
||||||
if isinstance(path, Path):
|
if isinstance(path, Path):
|
||||||
path = str(path)
|
path = str(path)
|
||||||
@@ -100,84 +101,85 @@ class FFMPEGProcessAudioAdapter(AudioAdapter):
|
|||||||
probe = ffmpeg.probe(path)
|
probe = ffmpeg.probe(path)
|
||||||
except ffmpeg._run.Error as e:
|
except ffmpeg._run.Error as e:
|
||||||
raise SpleeterError(
|
raise SpleeterError(
|
||||||
'An error occurs with ffprobe (see ffprobe output below)\n\n{}'
|
"An error occurs with ffprobe (see ffprobe output below)\n\n{}".format(
|
||||||
.format(e.stderr.decode()))
|
e.stderr.decode()
|
||||||
if 'streams' not in probe or len(probe['streams']) == 0:
|
)
|
||||||
raise SpleeterError('No stream was found with ffprobe')
|
)
|
||||||
|
if "streams" not in probe or len(probe["streams"]) == 0:
|
||||||
|
raise SpleeterError("No stream was found with ffprobe")
|
||||||
metadata = next(
|
metadata = next(
|
||||||
stream
|
stream for stream in probe["streams"] if stream["codec_type"] == "audio"
|
||||||
for stream in probe['streams']
|
)
|
||||||
if stream['codec_type'] == 'audio')
|
n_channels = metadata["channels"]
|
||||||
n_channels = metadata['channels']
|
|
||||||
if sample_rate is None:
|
if sample_rate is None:
|
||||||
sample_rate = metadata['sample_rate']
|
sample_rate = metadata["sample_rate"]
|
||||||
output_kwargs = {'format': 'f32le', 'ar': sample_rate}
|
output_kwargs = {"format": "f32le", "ar": sample_rate}
|
||||||
if duration is not None:
|
if duration is not None:
|
||||||
output_kwargs['t'] = str(dt.timedelta(seconds=duration))
|
output_kwargs["t"] = str(dt.timedelta(seconds=duration))
|
||||||
if offset is not None:
|
if offset is not None:
|
||||||
output_kwargs['ss'] = str(dt.timedelta(seconds=offset))
|
output_kwargs["ss"] = str(dt.timedelta(seconds=offset))
|
||||||
process = (
|
process = (
|
||||||
ffmpeg
|
ffmpeg.input(path)
|
||||||
.input(path)
|
.output("pipe:", **output_kwargs)
|
||||||
.output('pipe:', **output_kwargs)
|
.run_async(pipe_stdout=True, pipe_stderr=True)
|
||||||
.run_async(pipe_stdout=True, pipe_stderr=True))
|
)
|
||||||
buffer, _ = process.communicate()
|
buffer, _ = process.communicate()
|
||||||
waveform = np.frombuffer(buffer, dtype='<f4').reshape(-1, n_channels)
|
waveform = np.frombuffer(buffer, dtype="<f4").reshape(-1, n_channels)
|
||||||
if not waveform.dtype == np.dtype(dtype):
|
if not waveform.dtype == np.dtype(dtype):
|
||||||
waveform = waveform.astype(dtype)
|
waveform = waveform.astype(dtype)
|
||||||
return (waveform, sample_rate)
|
return (waveform, sample_rate)
|
||||||
|
|
||||||
def save(
|
def save(
|
||||||
self,
|
self,
|
||||||
path: Union[Path, str],
|
path: Union[Path, str],
|
||||||
data: np.ndarray,
|
data: np.ndarray,
|
||||||
sample_rate: float,
|
sample_rate: float,
|
||||||
codec: Codec = None,
|
codec: Codec = None,
|
||||||
bitrate: str = None) -> None:
|
bitrate: str = None,
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Write waveform data to the file denoted by the given path using
|
Write waveform data to the file denoted by the given path using
|
||||||
FFMPEG process.
|
FFMPEG process.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
path (Union[Path, str]):
|
path (Union[Path, str]):
|
||||||
Path like of the audio file to save data in.
|
Path like of the audio file to save data in.
|
||||||
data (numpy.ndarray):
|
data (numpy.ndarray):
|
||||||
Waveform data to write.
|
Waveform data to write.
|
||||||
sample_rate (float):
|
sample_rate (float):
|
||||||
Sample rate to write file in.
|
Sample rate to write file in.
|
||||||
codec ():
|
codec ():
|
||||||
(Optional) Writing codec to use, default to `None`.
|
(Optional) Writing codec to use, default to `None`.
|
||||||
bitrate (str):
|
bitrate (str):
|
||||||
(Optional) Bitrate of the written audio file, default to
|
(Optional) Bitrate of the written audio file, default to
|
||||||
`None`.
|
`None`.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
IOError:
|
IOError:
|
||||||
If any error occurs while using FFMPEG to write data.
|
If any error occurs while using FFMPEG to write data.
|
||||||
"""
|
"""
|
||||||
if isinstance(path, Path):
|
if isinstance(path, Path):
|
||||||
path = str(path)
|
path = str(path)
|
||||||
directory = os.path.dirname(path)
|
directory = os.path.dirname(path)
|
||||||
if not os.path.exists(directory):
|
if not os.path.exists(directory):
|
||||||
raise SpleeterError(
|
raise SpleeterError(f"output directory does not exists: {directory}")
|
||||||
f'output directory does not exists: {directory}')
|
logger.debug(f"Writing file {path}")
|
||||||
logger.debug(f'Writing file {path}')
|
input_kwargs = {"ar": sample_rate, "ac": data.shape[1]}
|
||||||
input_kwargs = {'ar': sample_rate, 'ac': data.shape[1]}
|
output_kwargs = {"ar": sample_rate, "strict": "-2"}
|
||||||
output_kwargs = {'ar': sample_rate, 'strict': '-2'}
|
|
||||||
if bitrate:
|
if bitrate:
|
||||||
output_kwargs['audio_bitrate'] = bitrate
|
output_kwargs["audio_bitrate"] = bitrate
|
||||||
if codec is not None and codec != 'wav':
|
if codec is not None and codec != "wav":
|
||||||
output_kwargs['codec'] = self.SUPPORTED_CODECS.get(codec, codec)
|
output_kwargs["codec"] = self.SUPPORTED_CODECS.get(codec, codec)
|
||||||
process = (
|
process = (
|
||||||
ffmpeg
|
ffmpeg.input("pipe:", format="f32le", **input_kwargs)
|
||||||
.input('pipe:', format='f32le', **input_kwargs)
|
|
||||||
.output(path, **output_kwargs)
|
.output(path, **output_kwargs)
|
||||||
.overwrite_output()
|
.overwrite_output()
|
||||||
.run_async(pipe_stdin=True, pipe_stderr=True, quiet=True))
|
.run_async(pipe_stdin=True, pipe_stderr=True, quiet=True)
|
||||||
|
)
|
||||||
try:
|
try:
|
||||||
process.stdin.write(data.astype('<f4').tobytes())
|
process.stdin.write(data.astype("<f4").tobytes())
|
||||||
process.stdin.close()
|
process.stdin.close()
|
||||||
process.wait()
|
process.wait()
|
||||||
except IOError:
|
except IOError:
|
||||||
raise SpleeterError(f'FFMPEG error: {process.stderr.read()}')
|
raise SpleeterError(f"FFMPEG error: {process.stderr.read()}")
|
||||||
logger.info(f'File {path} written succesfully')
|
logger.info(f"File {path} written succesfully")
|
||||||
|
|||||||
@@ -7,43 +7,44 @@
|
|||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
from tensorflow.signal import hann_window, stft
|
||||||
|
|
||||||
from tensorflow.signal import stft, hann_window
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
def compute_spectrogram_tf(
|
def compute_spectrogram_tf(
|
||||||
waveform: tf.Tensor,
|
waveform: tf.Tensor,
|
||||||
frame_length: int = 2048,
|
frame_length: int = 2048,
|
||||||
frame_step: int = 512,
|
frame_step: int = 512,
|
||||||
spec_exponent: float = 1.,
|
spec_exponent: float = 1.0,
|
||||||
window_exponent: float = 1.) -> tf.Tensor:
|
window_exponent: float = 1.0,
|
||||||
|
) -> tf.Tensor:
|
||||||
"""
|
"""
|
||||||
Compute magnitude / power spectrogram from waveform as a
|
Compute magnitude / power spectrogram from waveform as a
|
||||||
`n_samples x n_channels` tensor.
|
`n_samples x n_channels` tensor.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
waveform (tensorflow.Tensor):
|
waveform (tensorflow.Tensor):
|
||||||
Input waveform as `(times x number of channels)` tensor.
|
Input waveform as `(times x number of channels)` tensor.
|
||||||
frame_length (int):
|
frame_length (int):
|
||||||
Length of a STFT frame to use.
|
Length of a STFT frame to use.
|
||||||
frame_step (int):
|
frame_step (int):
|
||||||
HOP between successive frames.
|
HOP between successive frames.
|
||||||
spec_exponent (float):
|
spec_exponent (float):
|
||||||
Exponent of the spectrogram (usually 1 for magnitude
|
Exponent of the spectrogram (usually 1 for magnitude
|
||||||
spectrogram, or 2 for power spectrogram).
|
spectrogram, or 2 for power spectrogram).
|
||||||
window_exponent (float):
|
window_exponent (float):
|
||||||
Exponent applied to the Hann windowing function (may be
|
Exponent applied to the Hann windowing function (may be
|
||||||
useful for making perfect STFT/iSTFT reconstruction).
|
useful for making perfect STFT/iSTFT reconstruction).
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Computed magnitude / power spectrogram as a
|
Computed magnitude / power spectrogram as a
|
||||||
`(T x F x n_channels)` tensor.
|
`(T x F x n_channels)` tensor.
|
||||||
"""
|
"""
|
||||||
stft_tensor: tf.Tensor = tf.transpose(
|
stft_tensor: tf.Tensor = tf.transpose(
|
||||||
stft(
|
stft(
|
||||||
@@ -51,131 +52,125 @@ def compute_spectrogram_tf(
|
|||||||
frame_length,
|
frame_length,
|
||||||
frame_step,
|
frame_step,
|
||||||
window_fn=lambda f, dtype: hann_window(
|
window_fn=lambda f, dtype: hann_window(
|
||||||
f,
|
f, periodic=True, dtype=waveform.dtype
|
||||||
periodic=True,
|
)
|
||||||
dtype=waveform.dtype) ** window_exponent),
|
** window_exponent,
|
||||||
perm=[1, 2, 0])
|
),
|
||||||
|
perm=[1, 2, 0],
|
||||||
|
)
|
||||||
return tf.abs(stft_tensor) ** spec_exponent
|
return tf.abs(stft_tensor) ** spec_exponent
|
||||||
|
|
||||||
|
|
||||||
def time_stretch(
|
def time_stretch(
|
||||||
spectrogram: tf.Tensor,
|
spectrogram: tf.Tensor,
|
||||||
factor: float = 1.0,
|
factor: float = 1.0,
|
||||||
method: tf.image.ResizeMethod = tf.image.ResizeMethod.BILINEAR
|
method: tf.image.ResizeMethod = tf.image.ResizeMethod.BILINEAR,
|
||||||
) -> tf.Tensor:
|
) -> tf.Tensor:
|
||||||
"""
|
"""
|
||||||
Time stretch a spectrogram preserving shape in tensorflow. Note that
|
Time stretch a spectrogram preserving shape in tensorflow. Note that
|
||||||
this is an approximation in the frequency domain.
|
this is an approximation in the frequency domain.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
spectrogram (tensorflow.Tensor):
|
spectrogram (tensorflow.Tensor):
|
||||||
Input spectrogram to be time stretched as tensor.
|
Input spectrogram to be time stretched as tensor.
|
||||||
factor (float):
|
factor (float):
|
||||||
(Optional) Time stretch factor, must be > 0, default to `1`.
|
(Optional) Time stretch factor, must be > 0, default to `1`.
|
||||||
method (tensorflow.image.ResizeMethod):
|
method (tensorflow.image.ResizeMethod):
|
||||||
(Optional) Interpolation method, default to `BILINEAR`.
|
(Optional) Interpolation method, default to `BILINEAR`.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Time stretched spectrogram as tensor with same shape.
|
Time stretched spectrogram as tensor with same shape.
|
||||||
"""
|
"""
|
||||||
T = tf.shape(spectrogram)[0]
|
T = tf.shape(spectrogram)[0]
|
||||||
T_ts = tf.cast(tf.cast(T, tf.float32) * factor, tf.int32)[0]
|
T_ts = tf.cast(tf.cast(T, tf.float32) * factor, tf.int32)[0]
|
||||||
F = tf.shape(spectrogram)[1]
|
F = tf.shape(spectrogram)[1]
|
||||||
ts_spec = tf.image.resize_images(
|
ts_spec = tf.image.resize_images(
|
||||||
spectrogram,
|
spectrogram, [T_ts, F], method=method, align_corners=True
|
||||||
[T_ts, F],
|
)
|
||||||
method=method,
|
|
||||||
align_corners=True)
|
|
||||||
return tf.image.resize_image_with_crop_or_pad(ts_spec, T, F)
|
return tf.image.resize_image_with_crop_or_pad(ts_spec, T, F)
|
||||||
|
|
||||||
|
|
||||||
def random_time_stretch(
|
def random_time_stretch(
|
||||||
spectrogram: tf.Tensor,
|
spectrogram: tf.Tensor, factor_min: float = 0.9, factor_max: float = 1.1, **kwargs
|
||||||
factor_min: float = 0.9,
|
) -> tf.Tensor:
|
||||||
factor_max: float = 1.1,
|
|
||||||
**kwargs) -> tf.Tensor:
|
|
||||||
"""
|
"""
|
||||||
Time stretch a spectrogram preserving shape with random ratio in
|
Time stretch a spectrogram preserving shape with random ratio in
|
||||||
tensorflow. Applies time_stretch to spectrogram with a random ratio
|
tensorflow. Applies time_stretch to spectrogram with a random ratio
|
||||||
drawn uniformly in `[factor_min, factor_max]`.
|
drawn uniformly in `[factor_min, factor_max]`.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
spectrogram (tensorflow.Tensor):
|
spectrogram (tensorflow.Tensor):
|
||||||
Input spectrogram to be time stretched as tensor.
|
Input spectrogram to be time stretched as tensor.
|
||||||
factor_min (float):
|
factor_min (float):
|
||||||
(Optional) Min time stretch factor, default to `0.9`.
|
(Optional) Min time stretch factor, default to `0.9`.
|
||||||
factor_max (float):
|
factor_max (float):
|
||||||
(Optional) Max time stretch factor, default to `1.1`.
|
(Optional) Max time stretch factor, default to `1.1`.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Randomly time stretched spectrogram as tensor with same shape.
|
Randomly time stretched spectrogram as tensor with same shape.
|
||||||
"""
|
"""
|
||||||
factor = tf.random_uniform(
|
factor = (
|
||||||
shape=(1,),
|
tf.random_uniform(shape=(1,), seed=0) * (factor_max - factor_min) + factor_min
|
||||||
seed=0) * (factor_max - factor_min) + factor_min
|
)
|
||||||
return time_stretch(spectrogram, factor=factor, **kwargs)
|
return time_stretch(spectrogram, factor=factor, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
def pitch_shift(
|
def pitch_shift(
|
||||||
spectrogram: tf.Tensor,
|
spectrogram: tf.Tensor,
|
||||||
semitone_shift: float = 0.0,
|
semitone_shift: float = 0.0,
|
||||||
method: tf.image.ResizeMethod = tf.image.ResizeMethod.BILINEAR
|
method: tf.image.ResizeMethod = tf.image.ResizeMethod.BILINEAR,
|
||||||
) -> tf.Tensor:
|
) -> tf.Tensor:
|
||||||
"""
|
"""
|
||||||
Pitch shift a spectrogram preserving shape in tensorflow. Note that
|
Pitch shift a spectrogram preserving shape in tensorflow. Note that
|
||||||
this is an approximation in the frequency domain.
|
this is an approximation in the frequency domain.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
spectrogram (tensorflow.Tensor):
|
spectrogram (tensorflow.Tensor):
|
||||||
Input spectrogram to be pitch shifted as tensor.
|
Input spectrogram to be pitch shifted as tensor.
|
||||||
semitone_shift (float):
|
semitone_shift (float):
|
||||||
(Optional) Pitch shift in semitone, default to `0.0`.
|
(Optional) Pitch shift in semitone, default to `0.0`.
|
||||||
method (tensorflow.image.ResizeMethod):
|
method (tensorflow.image.ResizeMethod):
|
||||||
(Optional) Interpolation method, default to `BILINEAR`.
|
(Optional) Interpolation method, default to `BILINEAR`.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Pitch shifted spectrogram (same shape as spectrogram).
|
Pitch shifted spectrogram (same shape as spectrogram).
|
||||||
"""
|
"""
|
||||||
factor = 2 ** (semitone_shift / 12.)
|
factor = 2 ** (semitone_shift / 12.0)
|
||||||
T = tf.shape(spectrogram)[0]
|
T = tf.shape(spectrogram)[0]
|
||||||
F = tf.shape(spectrogram)[1]
|
F = tf.shape(spectrogram)[1]
|
||||||
F_ps = tf.cast(tf.cast(F, tf.float32) * factor, tf.int32)[0]
|
F_ps = tf.cast(tf.cast(F, tf.float32) * factor, tf.int32)[0]
|
||||||
ps_spec = tf.image.resize_images(
|
ps_spec = tf.image.resize_images(
|
||||||
spectrogram,
|
spectrogram, [T, F_ps], method=method, align_corners=True
|
||||||
[T, F_ps],
|
)
|
||||||
method=method,
|
|
||||||
align_corners=True)
|
|
||||||
paddings = [[0, 0], [0, tf.maximum(0, F - F_ps)], [0, 0]]
|
paddings = [[0, 0], [0, tf.maximum(0, F - F_ps)], [0, 0]]
|
||||||
return tf.pad(ps_spec[:, :F, :], paddings, 'CONSTANT')
|
return tf.pad(ps_spec[:, :F, :], paddings, "CONSTANT")
|
||||||
|
|
||||||
|
|
||||||
def random_pitch_shift(
|
def random_pitch_shift(
|
||||||
spectrogram: tf.Tensor,
|
spectrogram: tf.Tensor, shift_min: float = -1.0, shift_max: float = 1.0, **kwargs
|
||||||
shift_min: float = -1.,
|
) -> tf.Tensor:
|
||||||
shift_max: float = 1.,
|
|
||||||
**kwargs) -> tf.Tensor:
|
|
||||||
"""
|
"""
|
||||||
Pitch shift a spectrogram preserving shape with random ratio in
|
Pitch shift a spectrogram preserving shape with random ratio in
|
||||||
tensorflow. Applies pitch_shift to spectrogram with a random shift
|
tensorflow. Applies pitch_shift to spectrogram with a random shift
|
||||||
amount (expressed in semitones) drawn uniformly in
|
amount (expressed in semitones) drawn uniformly in
|
||||||
`[shift_min, shift_max]`.
|
`[shift_min, shift_max]`.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
spectrogram (tensorflow.Tensor):
|
spectrogram (tensorflow.Tensor):
|
||||||
Input spectrogram to be pitch shifted as tensor.
|
Input spectrogram to be pitch shifted as tensor.
|
||||||
shift_min (float):
|
shift_min (float):
|
||||||
(Optional) Min pitch shift in semitone, default to -1.
|
(Optional) Min pitch shift in semitone, default to -1.
|
||||||
shift_max (float):
|
shift_max (float):
|
||||||
(Optional) Max pitch shift in semitone, default to 1.
|
(Optional) Max pitch shift in semitone, default to 1.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Randomly pitch shifted spectrogram (same shape as spectrogram).
|
Randomly pitch shifted spectrogram (same shape as spectrogram).
|
||||||
"""
|
"""
|
||||||
semitone_shift = tf.random_uniform(
|
semitone_shift = (
|
||||||
shape=(1,),
|
tf.random_uniform(shape=(1,), seed=0) * (shift_max - shift_min) + shift_min
|
||||||
seed=0) * (shift_max - shift_min) + shift_min
|
)
|
||||||
return pitch_shift(spectrogram, semitone_shift=semitone_shift, **kwargs)
|
return pitch_shift(spectrogram, semitone_shift=semitone_shift, **kwargs)
|
||||||
|
|||||||
@@ -14,104 +14,110 @@
|
|||||||
(ground truth)
|
(ground truth)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import time
|
|
||||||
import os
|
import os
|
||||||
|
import time
|
||||||
from os.path import exists, sep as SEPARATOR
|
from os.path import exists
|
||||||
|
from os.path import sep as SEPARATOR
|
||||||
from typing import Any, Dict, Optional
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
from .audio.adapter import AudioAdapter
|
|
||||||
from .audio.convertor import db_uint_spectrogram_to_gain
|
|
||||||
from .audio.convertor import spectrogram_to_db_uint
|
|
||||||
from .audio.spectrogram import compute_spectrogram_tf
|
|
||||||
from .audio.spectrogram import random_pitch_shift, random_time_stretch
|
|
||||||
from .utils.logging import logger
|
|
||||||
from .utils.tensor import check_tensor_shape, dataset_from_csv
|
|
||||||
from .utils.tensor import set_tensor_shape, sync_apply
|
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from .audio.adapter import AudioAdapter
|
||||||
|
from .audio.convertor import db_uint_spectrogram_to_gain, spectrogram_to_db_uint
|
||||||
|
from .audio.spectrogram import (
|
||||||
|
compute_spectrogram_tf,
|
||||||
|
random_pitch_shift,
|
||||||
|
random_time_stretch,
|
||||||
|
)
|
||||||
|
from .utils.logging import logger
|
||||||
|
from .utils.tensor import (
|
||||||
|
check_tensor_shape,
|
||||||
|
dataset_from_csv,
|
||||||
|
set_tensor_shape,
|
||||||
|
sync_apply,
|
||||||
|
)
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
# Default audio parameters to use.
|
# Default audio parameters to use.
|
||||||
DEFAULT_AUDIO_PARAMS: Dict = {
|
DEFAULT_AUDIO_PARAMS: Dict = {
|
||||||
'instrument_list': ('vocals', 'accompaniment'),
|
"instrument_list": ("vocals", "accompaniment"),
|
||||||
'mix_name': 'mix',
|
"mix_name": "mix",
|
||||||
'sample_rate': 44100,
|
"sample_rate": 44100,
|
||||||
'frame_length': 4096,
|
"frame_length": 4096,
|
||||||
'frame_step': 1024,
|
"frame_step": 1024,
|
||||||
'T': 512,
|
"T": 512,
|
||||||
'F': 1024}
|
"F": 1024,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
def get_training_dataset(
|
def get_training_dataset(
|
||||||
audio_params: Dict,
|
audio_params: Dict, audio_adapter: AudioAdapter, audio_path: str
|
||||||
audio_adapter: AudioAdapter,
|
) -> Any:
|
||||||
audio_path: str) -> Any:
|
|
||||||
"""
|
"""
|
||||||
Builds training dataset.
|
Builds training dataset.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
audio_params (Dict):
|
audio_params (Dict):
|
||||||
Audio parameters.
|
Audio parameters.
|
||||||
audio_adapter (AudioAdapter):
|
audio_adapter (AudioAdapter):
|
||||||
Adapter to load audio from.
|
Adapter to load audio from.
|
||||||
audio_path (str):
|
audio_path (str):
|
||||||
Path of directory containing audio.
|
Path of directory containing audio.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Any:
|
Any:
|
||||||
Built dataset.
|
Built dataset.
|
||||||
"""
|
"""
|
||||||
builder = DatasetBuilder(
|
builder = DatasetBuilder(
|
||||||
audio_params,
|
audio_params,
|
||||||
audio_adapter,
|
audio_adapter,
|
||||||
audio_path,
|
audio_path,
|
||||||
chunk_duration=audio_params.get('chunk_duration', 20.0),
|
chunk_duration=audio_params.get("chunk_duration", 20.0),
|
||||||
random_seed=audio_params.get('random_seed', 0))
|
random_seed=audio_params.get("random_seed", 0),
|
||||||
|
)
|
||||||
return builder.build(
|
return builder.build(
|
||||||
audio_params.get('train_csv'),
|
audio_params.get("train_csv"),
|
||||||
cache_directory=audio_params.get('training_cache'),
|
cache_directory=audio_params.get("training_cache"),
|
||||||
batch_size=audio_params.get('batch_size'),
|
batch_size=audio_params.get("batch_size"),
|
||||||
n_chunks_per_song=audio_params.get('n_chunks_per_song', 2),
|
n_chunks_per_song=audio_params.get("n_chunks_per_song", 2),
|
||||||
random_data_augmentation=False,
|
random_data_augmentation=False,
|
||||||
convert_to_uint=True,
|
convert_to_uint=True,
|
||||||
wait_for_cache=False)
|
wait_for_cache=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def get_validation_dataset(
|
def get_validation_dataset(
|
||||||
audio_params: Dict,
|
audio_params: Dict, audio_adapter: AudioAdapter, audio_path: str
|
||||||
audio_adapter: AudioAdapter,
|
) -> Any:
|
||||||
audio_path: str) -> Any:
|
|
||||||
"""
|
"""
|
||||||
Builds validation dataset.
|
Builds validation dataset.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
audio_params (Dict):
|
audio_params (Dict):
|
||||||
Audio parameters.
|
Audio parameters.
|
||||||
audio_adapter (AudioAdapter):
|
audio_adapter (AudioAdapter):
|
||||||
Adapter to load audio from.
|
Adapter to load audio from.
|
||||||
audio_path (str):
|
audio_path (str):
|
||||||
Path of directory containing audio.
|
Path of directory containing audio.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Any:
|
Any:
|
||||||
Built dataset.
|
Built dataset.
|
||||||
"""
|
"""
|
||||||
builder = DatasetBuilder(
|
builder = DatasetBuilder(
|
||||||
audio_params,
|
audio_params, audio_adapter, audio_path, chunk_duration=12.0
|
||||||
audio_adapter,
|
)
|
||||||
audio_path,
|
|
||||||
chunk_duration=12.0)
|
|
||||||
return builder.build(
|
return builder.build(
|
||||||
audio_params.get('validation_csv'),
|
audio_params.get("validation_csv"),
|
||||||
batch_size=audio_params.get('batch_size'),
|
batch_size=audio_params.get("batch_size"),
|
||||||
cache_directory=audio_params.get('validation_cache'),
|
cache_directory=audio_params.get("validation_cache"),
|
||||||
convert_to_uint=True,
|
convert_to_uint=True,
|
||||||
infinite_generator=False,
|
infinite_generator=False,
|
||||||
n_chunks_per_song=1,
|
n_chunks_per_song=1,
|
||||||
@@ -127,97 +133,132 @@ class InstrumentDatasetBuilder(object):
|
|||||||
|
|
||||||
def __init__(self, parent, instrument) -> None:
|
def __init__(self, parent, instrument) -> None:
|
||||||
"""
|
"""
|
||||||
Default constructor.
|
Default constructor.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
parent:
|
parent:
|
||||||
Parent dataset builder.
|
Parent dataset builder.
|
||||||
instrument:
|
instrument:
|
||||||
Target instrument.
|
Target instrument.
|
||||||
"""
|
"""
|
||||||
self._parent = parent
|
self._parent = parent
|
||||||
self._instrument = instrument
|
self._instrument = instrument
|
||||||
self._spectrogram_key = f'{instrument}_spectrogram'
|
self._spectrogram_key = f"{instrument}_spectrogram"
|
||||||
self._min_spectrogram_key = f'min_{instrument}_spectrogram'
|
self._min_spectrogram_key = f"min_{instrument}_spectrogram"
|
||||||
self._max_spectrogram_key = f'max_{instrument}_spectrogram'
|
self._max_spectrogram_key = f"max_{instrument}_spectrogram"
|
||||||
|
|
||||||
def load_waveform(self, sample):
|
def load_waveform(self, sample):
|
||||||
""" Load waveform for given sample. """
|
""" Load waveform for given sample. """
|
||||||
return dict(sample, **self._parent._audio_adapter.load_tf_waveform(
|
return dict(
|
||||||
sample[f'{self._instrument}_path'],
|
sample,
|
||||||
offset=sample['start'],
|
**self._parent._audio_adapter.load_tf_waveform(
|
||||||
duration=self._parent._chunk_duration,
|
sample[f"{self._instrument}_path"],
|
||||||
sample_rate=self._parent._sample_rate,
|
offset=sample["start"],
|
||||||
waveform_name='waveform'))
|
duration=self._parent._chunk_duration,
|
||||||
|
sample_rate=self._parent._sample_rate,
|
||||||
|
waveform_name="waveform",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
def compute_spectrogram(self, sample):
|
def compute_spectrogram(self, sample):
|
||||||
""" Compute spectrogram of the given sample. """
|
""" Compute spectrogram of the given sample. """
|
||||||
return dict(sample, **{
|
return dict(
|
||||||
self._spectrogram_key: compute_spectrogram_tf(
|
sample,
|
||||||
sample['waveform'],
|
**{
|
||||||
frame_length=self._parent._frame_length,
|
self._spectrogram_key: compute_spectrogram_tf(
|
||||||
frame_step=self._parent._frame_step,
|
sample["waveform"],
|
||||||
spec_exponent=1.,
|
frame_length=self._parent._frame_length,
|
||||||
window_exponent=1.)})
|
frame_step=self._parent._frame_step,
|
||||||
|
spec_exponent=1.0,
|
||||||
|
window_exponent=1.0,
|
||||||
|
)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
def filter_frequencies(self, sample):
|
def filter_frequencies(self, sample):
|
||||||
""" """
|
""" """
|
||||||
return dict(sample, **{
|
return dict(
|
||||||
self._spectrogram_key:
|
sample,
|
||||||
sample[self._spectrogram_key][:, :self._parent._F, :]})
|
**{
|
||||||
|
self._spectrogram_key: sample[self._spectrogram_key][
|
||||||
|
:, : self._parent._F, :
|
||||||
|
]
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
def convert_to_uint(self, sample):
|
def convert_to_uint(self, sample):
|
||||||
""" Convert given sample from float to unit. """
|
""" Convert given sample from float to unit. """
|
||||||
return dict(sample, **spectrogram_to_db_uint(
|
return dict(
|
||||||
sample[self._spectrogram_key],
|
sample,
|
||||||
tensor_key=self._spectrogram_key,
|
**spectrogram_to_db_uint(
|
||||||
min_key=self._min_spectrogram_key,
|
sample[self._spectrogram_key],
|
||||||
max_key=self._max_spectrogram_key))
|
tensor_key=self._spectrogram_key,
|
||||||
|
min_key=self._min_spectrogram_key,
|
||||||
|
max_key=self._max_spectrogram_key,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
def filter_infinity(self, sample):
|
def filter_infinity(self, sample):
|
||||||
""" Filter infinity sample. """
|
""" Filter infinity sample. """
|
||||||
return tf.logical_not(
|
return tf.logical_not(tf.math.is_inf(sample[self._min_spectrogram_key]))
|
||||||
tf.math.is_inf(
|
|
||||||
sample[self._min_spectrogram_key]))
|
|
||||||
|
|
||||||
def convert_to_float32(self, sample):
|
def convert_to_float32(self, sample):
|
||||||
""" Convert given sample from unit to float. """
|
""" Convert given sample from unit to float. """
|
||||||
return dict(sample, **{
|
return dict(
|
||||||
self._spectrogram_key: db_uint_spectrogram_to_gain(
|
sample,
|
||||||
sample[self._spectrogram_key],
|
**{
|
||||||
sample[self._min_spectrogram_key],
|
self._spectrogram_key: db_uint_spectrogram_to_gain(
|
||||||
sample[self._max_spectrogram_key])})
|
sample[self._spectrogram_key],
|
||||||
|
sample[self._min_spectrogram_key],
|
||||||
|
sample[self._max_spectrogram_key],
|
||||||
|
)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
def time_crop(self, sample):
|
def time_crop(self, sample):
|
||||||
""" """
|
""" """
|
||||||
|
|
||||||
def start(sample):
|
def start(sample):
|
||||||
""" mid_segment_start """
|
""" mid_segment_start """
|
||||||
return tf.cast(
|
return tf.cast(
|
||||||
tf.maximum(
|
tf.maximum(
|
||||||
tf.shape(sample[self._spectrogram_key])[0]
|
tf.shape(sample[self._spectrogram_key])[0] / 2
|
||||||
/ 2 - self._parent._T / 2, 0),
|
- self._parent._T / 2,
|
||||||
tf.int32)
|
0,
|
||||||
return dict(sample, **{
|
),
|
||||||
self._spectrogram_key: sample[self._spectrogram_key][
|
tf.int32,
|
||||||
start(sample):start(sample) + self._parent._T, :, :]})
|
)
|
||||||
|
|
||||||
|
return dict(
|
||||||
|
sample,
|
||||||
|
**{
|
||||||
|
self._spectrogram_key: sample[self._spectrogram_key][
|
||||||
|
start(sample) : start(sample) + self._parent._T, :, :
|
||||||
|
]
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
def filter_shape(self, sample):
|
def filter_shape(self, sample):
|
||||||
""" Filter badly shaped sample. """
|
""" Filter badly shaped sample. """
|
||||||
return check_tensor_shape(
|
return check_tensor_shape(
|
||||||
sample[self._spectrogram_key], (
|
sample[self._spectrogram_key], (self._parent._T, self._parent._F, 2)
|
||||||
self._parent._T, self._parent._F, 2))
|
)
|
||||||
|
|
||||||
def reshape_spectrogram(self, sample):
|
def reshape_spectrogram(self, sample):
|
||||||
""" Reshape given sample. """
|
""" Reshape given sample. """
|
||||||
return dict(sample, **{
|
return dict(
|
||||||
self._spectrogram_key: set_tensor_shape(
|
sample,
|
||||||
sample[self._spectrogram_key],
|
**{
|
||||||
(self._parent._T, self._parent._F, 2))})
|
self._spectrogram_key: set_tensor_shape(
|
||||||
|
sample[self._spectrogram_key], (self._parent._T, self._parent._F, 2)
|
||||||
|
)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class DatasetBuilder(object):
|
class DatasetBuilder(object):
|
||||||
"""
|
"""
|
||||||
TO BE DOCUMENTED.
|
TO BE DOCUMENTED.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
MARGIN: float = 0.5
|
MARGIN: float = 0.5
|
||||||
@@ -227,37 +268,38 @@ class DatasetBuilder(object):
|
|||||||
""" Wait period for cache (in seconds). """
|
""" Wait period for cache (in seconds). """
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
audio_params: Dict,
|
audio_params: Dict,
|
||||||
audio_adapter: AudioAdapter,
|
audio_adapter: AudioAdapter,
|
||||||
audio_path: str,
|
audio_path: str,
|
||||||
random_seed: int = 0,
|
random_seed: int = 0,
|
||||||
chunk_duration: float = 20.0) -> None:
|
chunk_duration: float = 20.0,
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Default constructor.
|
Default constructor.
|
||||||
|
|
||||||
NOTE: Probably need for AudioAdapter.
|
NOTE: Probably need for AudioAdapter.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
audio_params (Dict):
|
audio_params (Dict):
|
||||||
Audio parameters to use.
|
Audio parameters to use.
|
||||||
audio_adapter (AudioAdapter):
|
audio_adapter (AudioAdapter):
|
||||||
Audio adapter to use.
|
Audio adapter to use.
|
||||||
audio_path (str):
|
audio_path (str):
|
||||||
random_seed (int):
|
random_seed (int):
|
||||||
chunk_duration (float):
|
chunk_duration (float):
|
||||||
"""
|
"""
|
||||||
# Length of segment in frames (if fs=22050 and
|
# Length of segment in frames (if fs=22050 and
|
||||||
# frame_step=512, then T=512 corresponds to 11.89s)
|
# frame_step=512, then T=512 corresponds to 11.89s)
|
||||||
self._T = audio_params['T']
|
self._T = audio_params["T"]
|
||||||
# Number of frequency bins to be used (should
|
# Number of frequency bins to be used (should
|
||||||
# be less than frame_length/2 + 1)
|
# be less than frame_length/2 + 1)
|
||||||
self._F = audio_params['F']
|
self._F = audio_params["F"]
|
||||||
self._sample_rate = audio_params['sample_rate']
|
self._sample_rate = audio_params["sample_rate"]
|
||||||
self._frame_length = audio_params['frame_length']
|
self._frame_length = audio_params["frame_length"]
|
||||||
self._frame_step = audio_params['frame_step']
|
self._frame_step = audio_params["frame_step"]
|
||||||
self._mix_name = audio_params['mix_name']
|
self._mix_name = audio_params["mix_name"]
|
||||||
self._instruments = [self._mix_name] + audio_params['instrument_list']
|
self._instruments = [self._mix_name] + audio_params["instrument_list"]
|
||||||
self._instrument_builders = None
|
self._instrument_builders = None
|
||||||
self._chunk_duration = chunk_duration
|
self._chunk_duration = chunk_duration
|
||||||
self._audio_adapter = audio_adapter
|
self._audio_adapter = audio_adapter
|
||||||
@@ -267,105 +309,157 @@ class DatasetBuilder(object):
|
|||||||
|
|
||||||
def expand_path(self, sample):
|
def expand_path(self, sample):
|
||||||
""" Expands audio paths for the given sample. """
|
""" Expands audio paths for the given sample. """
|
||||||
return dict(sample, **{f'{instrument}_path': tf.strings.join(
|
return dict(
|
||||||
(self._audio_path, sample[f'{instrument}_path']), SEPARATOR)
|
sample,
|
||||||
for instrument in self._instruments})
|
**{
|
||||||
|
f"{instrument}_path": tf.strings.join(
|
||||||
|
(self._audio_path, sample[f"{instrument}_path"]), SEPARATOR
|
||||||
|
)
|
||||||
|
for instrument in self._instruments
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
def filter_error(self, sample):
|
def filter_error(self, sample):
|
||||||
""" Filter errored sample. """
|
""" Filter errored sample. """
|
||||||
return tf.logical_not(sample['waveform_error'])
|
return tf.logical_not(sample["waveform_error"])
|
||||||
|
|
||||||
def filter_waveform(self, sample):
|
def filter_waveform(self, sample):
|
||||||
""" Filter waveform from sample. """
|
""" Filter waveform from sample. """
|
||||||
return {k: v for k, v in sample.items() if not k == 'waveform'}
|
return {k: v for k, v in sample.items() if not k == "waveform"}
|
||||||
|
|
||||||
def harmonize_spectrogram(self, sample):
|
def harmonize_spectrogram(self, sample):
|
||||||
""" Ensure same size for vocals and mix spectrograms. """
|
""" Ensure same size for vocals and mix spectrograms. """
|
||||||
|
|
||||||
def _reduce(sample):
|
def _reduce(sample):
|
||||||
return tf.reduce_min([
|
return tf.reduce_min(
|
||||||
tf.shape(sample[f'{instrument}_spectrogram'])[0]
|
[
|
||||||
for instrument in self._instruments])
|
tf.shape(sample[f"{instrument}_spectrogram"])[0]
|
||||||
return dict(sample, **{
|
for instrument in self._instruments
|
||||||
f'{instrument}_spectrogram':
|
]
|
||||||
sample[f'{instrument}_spectrogram'][:_reduce(sample), :, :]
|
)
|
||||||
for instrument in self._instruments})
|
|
||||||
|
return dict(
|
||||||
|
sample,
|
||||||
|
**{
|
||||||
|
f"{instrument}_spectrogram": sample[f"{instrument}_spectrogram"][
|
||||||
|
: _reduce(sample), :, :
|
||||||
|
]
|
||||||
|
for instrument in self._instruments
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
def filter_short_segments(self, sample):
|
def filter_short_segments(self, sample):
|
||||||
""" Filter out too short segment. """
|
""" Filter out too short segment. """
|
||||||
return tf.reduce_any([
|
return tf.reduce_any(
|
||||||
tf.shape(sample[f'{instrument}_spectrogram'])[0] >= self._T
|
[
|
||||||
for instrument in self._instruments])
|
tf.shape(sample[f"{instrument}_spectrogram"])[0] >= self._T
|
||||||
|
for instrument in self._instruments
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
def random_time_crop(self, sample):
|
def random_time_crop(self, sample):
|
||||||
""" Random time crop of 11.88s. """
|
""" Random time crop of 11.88s. """
|
||||||
return dict(sample, **sync_apply({
|
return dict(
|
||||||
f'{instrument}_spectrogram': sample[f'{instrument}_spectrogram']
|
sample,
|
||||||
for instrument in self._instruments},
|
**sync_apply(
|
||||||
lambda x: tf.image.random_crop(
|
{
|
||||||
x, (self._T, len(self._instruments) * self._F, 2),
|
f"{instrument}_spectrogram": sample[f"{instrument}_spectrogram"]
|
||||||
seed=self._random_seed)))
|
for instrument in self._instruments
|
||||||
|
},
|
||||||
|
lambda x: tf.image.random_crop(
|
||||||
|
x,
|
||||||
|
(self._T, len(self._instruments) * self._F, 2),
|
||||||
|
seed=self._random_seed,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
def random_time_stretch(self, sample):
|
def random_time_stretch(self, sample):
|
||||||
""" Randomly time stretch the given sample. """
|
""" Randomly time stretch the given sample. """
|
||||||
return dict(sample, **sync_apply({
|
return dict(
|
||||||
f'{instrument}_spectrogram':
|
sample,
|
||||||
sample[f'{instrument}_spectrogram']
|
**sync_apply(
|
||||||
for instrument in self._instruments},
|
{
|
||||||
lambda x: random_time_stretch(
|
f"{instrument}_spectrogram": sample[f"{instrument}_spectrogram"]
|
||||||
x, factor_min=0.9, factor_max=1.1)))
|
for instrument in self._instruments
|
||||||
|
},
|
||||||
|
lambda x: random_time_stretch(x, factor_min=0.9, factor_max=1.1),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
def random_pitch_shift(self, sample):
|
def random_pitch_shift(self, sample):
|
||||||
""" Randomly pitch shift the given sample. """
|
""" Randomly pitch shift the given sample. """
|
||||||
return dict(sample, **sync_apply({
|
return dict(
|
||||||
f'{instrument}_spectrogram':
|
sample,
|
||||||
sample[f'{instrument}_spectrogram']
|
**sync_apply(
|
||||||
for instrument in self._instruments},
|
{
|
||||||
lambda x: random_pitch_shift(
|
f"{instrument}_spectrogram": sample[f"{instrument}_spectrogram"]
|
||||||
x, shift_min=-1.0, shift_max=1.0), concat_axis=0))
|
for instrument in self._instruments
|
||||||
|
},
|
||||||
|
lambda x: random_pitch_shift(x, shift_min=-1.0, shift_max=1.0),
|
||||||
|
concat_axis=0,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
def map_features(self, sample):
|
def map_features(self, sample):
|
||||||
""" Select features and annotation of the given sample. """
|
""" Select features and annotation of the given sample. """
|
||||||
input_ = {
|
input_ = {
|
||||||
f'{self._mix_name}_spectrogram':
|
f"{self._mix_name}_spectrogram": sample[f"{self._mix_name}_spectrogram"]
|
||||||
sample[f'{self._mix_name}_spectrogram']}
|
}
|
||||||
output = {
|
output = {
|
||||||
f'{instrument}_spectrogram': sample[f'{instrument}_spectrogram']
|
f"{instrument}_spectrogram": sample[f"{instrument}_spectrogram"]
|
||||||
for instrument in self._audio_params['instrument_list']}
|
for instrument in self._audio_params["instrument_list"]
|
||||||
|
}
|
||||||
return (input_, output)
|
return (input_, output)
|
||||||
|
|
||||||
def compute_segments(
|
def compute_segments(self, dataset: Any, n_chunks_per_song: int) -> Any:
|
||||||
self,
|
|
||||||
dataset: Any,
|
|
||||||
n_chunks_per_song: int) -> Any:
|
|
||||||
"""
|
"""
|
||||||
Computes segments for each song of the dataset.
|
Computes segments for each song of the dataset.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
dataset (Any):
|
dataset (Any):
|
||||||
Dataset to compute segments for.
|
Dataset to compute segments for.
|
||||||
n_chunks_per_song (int):
|
n_chunks_per_song (int):
|
||||||
Number of segment per song to compute.
|
Number of segment per song to compute.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Any:
|
Any:
|
||||||
Segmented dataset.
|
Segmented dataset.
|
||||||
"""
|
"""
|
||||||
if n_chunks_per_song <= 0:
|
if n_chunks_per_song <= 0:
|
||||||
raise ValueError('n_chunks_per_song must be positif')
|
raise ValueError("n_chunks_per_song must be positif")
|
||||||
datasets = []
|
datasets = []
|
||||||
for k in range(n_chunks_per_song):
|
for k in range(n_chunks_per_song):
|
||||||
if n_chunks_per_song > 1:
|
if n_chunks_per_song > 1:
|
||||||
datasets.append(
|
datasets.append(
|
||||||
dataset.map(lambda sample: dict(sample, start=tf.maximum(
|
dataset.map(
|
||||||
k * (
|
lambda sample: dict(
|
||||||
sample['duration'] - self._chunk_duration - 2
|
sample,
|
||||||
* self.MARGIN) / (n_chunks_per_song - 1)
|
start=tf.maximum(
|
||||||
+ self.MARGIN, 0))))
|
k
|
||||||
|
* (
|
||||||
|
sample["duration"]
|
||||||
|
- self._chunk_duration
|
||||||
|
- 2 * self.MARGIN
|
||||||
|
)
|
||||||
|
/ (n_chunks_per_song - 1)
|
||||||
|
+ self.MARGIN,
|
||||||
|
0,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
elif n_chunks_per_song == 1: # Take central segment.
|
elif n_chunks_per_song == 1: # Take central segment.
|
||||||
datasets.append(
|
datasets.append(
|
||||||
dataset.map(lambda sample: dict(sample, start=tf.maximum(
|
dataset.map(
|
||||||
sample['duration'] / 2 - self._chunk_duration / 2,
|
lambda sample: dict(
|
||||||
0))))
|
sample,
|
||||||
|
start=tf.maximum(
|
||||||
|
sample["duration"] / 2 - self._chunk_duration / 2, 0
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
dataset = datasets[-1]
|
dataset = datasets[-1]
|
||||||
for d in datasets[:-1]:
|
for d in datasets[:-1]:
|
||||||
dataset = dataset.concatenate(d)
|
dataset = dataset.concatenate(d)
|
||||||
@@ -374,47 +468,43 @@ class DatasetBuilder(object):
|
|||||||
@property
|
@property
|
||||||
def instruments(self) -> Any:
|
def instruments(self) -> Any:
|
||||||
"""
|
"""
|
||||||
Instrument dataset builder generator.
|
Instrument dataset builder generator.
|
||||||
|
|
||||||
Yields:
|
Yields:
|
||||||
Any:
|
Any:
|
||||||
InstrumentBuilder instance.
|
InstrumentBuilder instance.
|
||||||
"""
|
"""
|
||||||
if self._instrument_builders is None:
|
if self._instrument_builders is None:
|
||||||
self._instrument_builders = []
|
self._instrument_builders = []
|
||||||
for instrument in self._instruments:
|
for instrument in self._instruments:
|
||||||
self._instrument_builders.append(
|
self._instrument_builders.append(
|
||||||
InstrumentDatasetBuilder(self, instrument))
|
InstrumentDatasetBuilder(self, instrument)
|
||||||
|
)
|
||||||
for builder in self._instrument_builders:
|
for builder in self._instrument_builders:
|
||||||
yield builder
|
yield builder
|
||||||
|
|
||||||
def cache(
|
def cache(self, dataset: Any, cache: str, wait: bool) -> Any:
|
||||||
self,
|
|
||||||
dataset: Any,
|
|
||||||
cache: str,
|
|
||||||
wait: bool) -> Any:
|
|
||||||
"""
|
"""
|
||||||
Cache the given dataset if cache is enabled. Eventually waits for
|
Cache the given dataset if cache is enabled. Eventually waits for
|
||||||
cache to be available (useful if another process is already
|
cache to be available (useful if another process is already
|
||||||
computing cache) if provided wait flag is `True`.
|
computing cache) if provided wait flag is `True`.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
dataset (Any):
|
dataset (Any):
|
||||||
Dataset to be cached if cache is required.
|
Dataset to be cached if cache is required.
|
||||||
cache (str):
|
cache (str):
|
||||||
Path of cache directory to be used, None if no cache.
|
Path of cache directory to be used, None if no cache.
|
||||||
wait (bool):
|
wait (bool):
|
||||||
If caching is enabled, True is cache should be waited.
|
If caching is enabled, True is cache should be waited.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Any:
|
Any:
|
||||||
Cached dataset if needed, original dataset otherwise.
|
Cached dataset if needed, original dataset otherwise.
|
||||||
"""
|
"""
|
||||||
if cache is not None:
|
if cache is not None:
|
||||||
if wait:
|
if wait:
|
||||||
while not exists(f'{cache}.index'):
|
while not exists(f"{cache}.index"):
|
||||||
logger.info(
|
logger.info(f"Cache not available, wait {self.WAIT_PERIOD}")
|
||||||
f'Cache not available, wait {self.WAIT_PERIOD}')
|
|
||||||
time.sleep(self.WAIT_PERIOD)
|
time.sleep(self.WAIT_PERIOD)
|
||||||
cache_path = os.path.split(cache)[0]
|
cache_path = os.path.split(cache)[0]
|
||||||
os.makedirs(cache_path, exist_ok=True)
|
os.makedirs(cache_path, exist_ok=True)
|
||||||
@@ -422,20 +512,21 @@ class DatasetBuilder(object):
|
|||||||
return dataset
|
return dataset
|
||||||
|
|
||||||
def build(
|
def build(
|
||||||
self,
|
self,
|
||||||
csv_path: str,
|
csv_path: str,
|
||||||
batch_size: int = 8,
|
batch_size: int = 8,
|
||||||
shuffle: bool = True,
|
shuffle: bool = True,
|
||||||
convert_to_uint: bool = True,
|
convert_to_uint: bool = True,
|
||||||
random_data_augmentation: bool = False,
|
random_data_augmentation: bool = False,
|
||||||
random_time_crop: bool = True,
|
random_time_crop: bool = True,
|
||||||
infinite_generator: bool = True,
|
infinite_generator: bool = True,
|
||||||
cache_directory: Optional[str] = None,
|
cache_directory: Optional[str] = None,
|
||||||
wait_for_cache: bool = False,
|
wait_for_cache: bool = False,
|
||||||
num_parallel_calls: int = 4,
|
num_parallel_calls: int = 4,
|
||||||
n_chunks_per_song: float = 2,) -> Any:
|
n_chunks_per_song: float = 2,
|
||||||
|
) -> Any:
|
||||||
"""
|
"""
|
||||||
TO BE DOCUMENTED.
|
TO BE DOCUMENTED.
|
||||||
"""
|
"""
|
||||||
dataset = dataset_from_csv(csv_path)
|
dataset = dataset_from_csv(csv_path)
|
||||||
dataset = self.compute_segments(dataset, n_chunks_per_song)
|
dataset = self.compute_segments(dataset, n_chunks_per_song)
|
||||||
@@ -445,7 +536,8 @@ class DatasetBuilder(object):
|
|||||||
buffer_size=200000,
|
buffer_size=200000,
|
||||||
seed=self._random_seed,
|
seed=self._random_seed,
|
||||||
# useless since it is cached :
|
# useless since it is cached :
|
||||||
reshuffle_each_iteration=True)
|
reshuffle_each_iteration=True,
|
||||||
|
)
|
||||||
# Expand audio path.
|
# Expand audio path.
|
||||||
dataset = dataset.map(self.expand_path)
|
dataset = dataset.map(self.expand_path)
|
||||||
# Load waveform, compute spectrogram, and filtering error,
|
# Load waveform, compute spectrogram, and filtering error,
|
||||||
@@ -453,11 +545,11 @@ class DatasetBuilder(object):
|
|||||||
N = num_parallel_calls
|
N = num_parallel_calls
|
||||||
for instrument in self.instruments:
|
for instrument in self.instruments:
|
||||||
dataset = (
|
dataset = (
|
||||||
dataset
|
dataset.map(instrument.load_waveform, num_parallel_calls=N)
|
||||||
.map(instrument.load_waveform, num_parallel_calls=N)
|
|
||||||
.filter(self.filter_error)
|
.filter(self.filter_error)
|
||||||
.map(instrument.compute_spectrogram, num_parallel_calls=N)
|
.map(instrument.compute_spectrogram, num_parallel_calls=N)
|
||||||
.map(instrument.filter_frequencies))
|
.map(instrument.filter_frequencies)
|
||||||
|
)
|
||||||
dataset = dataset.map(self.filter_waveform)
|
dataset = dataset.map(self.filter_waveform)
|
||||||
# Convert to uint before caching in order to save space.
|
# Convert to uint before caching in order to save space.
|
||||||
if convert_to_uint:
|
if convert_to_uint:
|
||||||
@@ -488,26 +580,25 @@ class DatasetBuilder(object):
|
|||||||
# after croping but before converting back to float.
|
# after croping but before converting back to float.
|
||||||
if shuffle:
|
if shuffle:
|
||||||
dataset = dataset.shuffle(
|
dataset = dataset.shuffle(
|
||||||
buffer_size=256, seed=self._random_seed,
|
buffer_size=256, seed=self._random_seed, reshuffle_each_iteration=True
|
||||||
reshuffle_each_iteration=True)
|
)
|
||||||
# Convert back to float32
|
# Convert back to float32
|
||||||
if convert_to_uint:
|
if convert_to_uint:
|
||||||
for instrument in self.instruments:
|
for instrument in self.instruments:
|
||||||
dataset = dataset.map(
|
dataset = dataset.map(
|
||||||
instrument.convert_to_float32, num_parallel_calls=N)
|
instrument.convert_to_float32, num_parallel_calls=N
|
||||||
|
)
|
||||||
M = 8 # Parallel call post caching.
|
M = 8 # Parallel call post caching.
|
||||||
# Must be applied with the same factor on mix and vocals.
|
# Must be applied with the same factor on mix and vocals.
|
||||||
if random_data_augmentation:
|
if random_data_augmentation:
|
||||||
dataset = (
|
dataset = dataset.map(self.random_time_stretch, num_parallel_calls=M).map(
|
||||||
dataset
|
self.random_pitch_shift, num_parallel_calls=M
|
||||||
.map(self.random_time_stretch, num_parallel_calls=M)
|
)
|
||||||
.map(self.random_pitch_shift, num_parallel_calls=M))
|
|
||||||
# Filter by shape (remove badly shaped tensors).
|
# Filter by shape (remove badly shaped tensors).
|
||||||
for instrument in self.instruments:
|
for instrument in self.instruments:
|
||||||
dataset = (
|
dataset = dataset.filter(instrument.filter_shape).map(
|
||||||
dataset
|
instrument.reshape_spectrogram
|
||||||
.filter(instrument.filter_shape)
|
)
|
||||||
.map(instrument.reshape_spectrogram))
|
|
||||||
# Select features and annotation.
|
# Select features and annotation.
|
||||||
dataset = dataset.map(self.map_features)
|
dataset = dataset.map(self.map_features)
|
||||||
# Make batch (done after selection to avoid
|
# Make batch (done after selection to avoid
|
||||||
|
|||||||
@@ -8,15 +8,16 @@ import importlib
|
|||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
from tensorflow.signal import hann_window, inverse_stft, stft
|
||||||
from tensorflow.signal import stft, inverse_stft, hann_window
|
|
||||||
# pylint: enable=import-error
|
|
||||||
|
|
||||||
from ..utils.tensor import pad_and_partition, pad_and_reshape
|
from ..utils.tensor import pad_and_partition, pad_and_reshape
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
# pylint: enable=import-error
|
||||||
__author__ = 'Deezer Research'
|
|
||||||
__license__ = 'MIT License'
|
|
||||||
|
__email__ = "spleeter@deezer.com"
|
||||||
|
__author__ = "Deezer Research"
|
||||||
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
placeholder = tf.compat.v1.placeholder
|
placeholder = tf.compat.v1.placeholder
|
||||||
@@ -24,29 +25,28 @@ placeholder = tf.compat.v1.placeholder
|
|||||||
|
|
||||||
def get_model_function(model_type):
|
def get_model_function(model_type):
|
||||||
"""
|
"""
|
||||||
Get tensorflow function of the model to be applied to the input tensor.
|
Get tensorflow function of the model to be applied to the input tensor.
|
||||||
For instance "unet.softmax_unet" will return the softmax_unet function
|
For instance "unet.softmax_unet" will return the softmax_unet function
|
||||||
in the "unet.py" submodule of the current module (spleeter.model).
|
in the "unet.py" submodule of the current module (spleeter.model).
|
||||||
|
|
||||||
Params:
|
Params:
|
||||||
- model_type: str
|
- model_type: str
|
||||||
the relative module path to the model function.
|
the relative module path to the model function.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
A tensorflow function to be applied to the input tensor to get the
|
A tensorflow function to be applied to the input tensor to get the
|
||||||
multitrack output.
|
multitrack output.
|
||||||
"""
|
"""
|
||||||
relative_path_to_module = '.'.join(model_type.split('.')[:-1])
|
relative_path_to_module = ".".join(model_type.split(".")[:-1])
|
||||||
model_name = model_type.split('.')[-1]
|
model_name = model_type.split(".")[-1]
|
||||||
main_module = '.'.join((__name__, 'functions'))
|
main_module = ".".join((__name__, "functions"))
|
||||||
path_to_module = f'{main_module}.{relative_path_to_module}'
|
path_to_module = f"{main_module}.{relative_path_to_module}"
|
||||||
module = importlib.import_module(path_to_module)
|
module = importlib.import_module(path_to_module)
|
||||||
model_function = getattr(module, model_name)
|
model_function = getattr(module, model_name)
|
||||||
return model_function
|
return model_function
|
||||||
|
|
||||||
|
|
||||||
class InputProvider(object):
|
class InputProvider(object):
|
||||||
|
|
||||||
def __init__(self, params):
|
def __init__(self, params):
|
||||||
self.params = params
|
self.params = params
|
||||||
|
|
||||||
@@ -62,16 +62,16 @@ class InputProvider(object):
|
|||||||
|
|
||||||
|
|
||||||
class WaveformInputProvider(InputProvider):
|
class WaveformInputProvider(InputProvider):
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def input_names(self):
|
def input_names(self):
|
||||||
return ["audio_id", "waveform"]
|
return ["audio_id", "waveform"]
|
||||||
|
|
||||||
def get_input_dict_placeholders(self):
|
def get_input_dict_placeholders(self):
|
||||||
shape = (None, self.params['n_channels'])
|
shape = (None, self.params["n_channels"])
|
||||||
features = {
|
features = {
|
||||||
'waveform': placeholder(tf.float32, shape=shape, name="waveform"),
|
"waveform": placeholder(tf.float32, shape=shape, name="waveform"),
|
||||||
'audio_id': placeholder(tf.string, name="audio_id")}
|
"audio_id": placeholder(tf.string, name="audio_id"),
|
||||||
|
}
|
||||||
return features
|
return features
|
||||||
|
|
||||||
def get_feed_dict(self, features, waveform, audio_id):
|
def get_feed_dict(self, features, waveform, audio_id):
|
||||||
@@ -79,7 +79,6 @@ class WaveformInputProvider(InputProvider):
|
|||||||
|
|
||||||
|
|
||||||
class SpectralInputProvider(InputProvider):
|
class SpectralInputProvider(InputProvider):
|
||||||
|
|
||||||
def __init__(self, params):
|
def __init__(self, params):
|
||||||
super().__init__(params)
|
super().__init__(params)
|
||||||
self.stft_input_name = "{}_stft".format(self.params["mix_name"])
|
self.stft_input_name = "{}_stft".format(self.params["mix_name"])
|
||||||
@@ -90,11 +89,17 @@ class SpectralInputProvider(InputProvider):
|
|||||||
|
|
||||||
def get_input_dict_placeholders(self):
|
def get_input_dict_placeholders(self):
|
||||||
features = {
|
features = {
|
||||||
self.stft_input_name: placeholder(tf.complex64,
|
self.stft_input_name: placeholder(
|
||||||
shape=(None, self.params["frame_length"]//2+1,
|
tf.complex64,
|
||||||
self.params['n_channels']),
|
shape=(
|
||||||
name=self.stft_input_name),
|
None,
|
||||||
'audio_id': placeholder(tf.string, name="audio_id")}
|
self.params["frame_length"] // 2 + 1,
|
||||||
|
self.params["n_channels"],
|
||||||
|
),
|
||||||
|
name=self.stft_input_name,
|
||||||
|
),
|
||||||
|
"audio_id": placeholder(tf.string, name="audio_id"),
|
||||||
|
}
|
||||||
return features
|
return features
|
||||||
|
|
||||||
def get_feed_dict(self, features, stft, audio_id):
|
def get_feed_dict(self, features, stft, audio_id):
|
||||||
@@ -102,11 +107,13 @@ class SpectralInputProvider(InputProvider):
|
|||||||
|
|
||||||
|
|
||||||
class InputProviderFactory(object):
|
class InputProviderFactory(object):
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get(params):
|
def get(params):
|
||||||
stft_backend = params["stft_backend"]
|
stft_backend = params["stft_backend"]
|
||||||
assert stft_backend in ("tensorflow", "librosa"), "Unexpected backend {}".format(stft_backend)
|
assert stft_backend in (
|
||||||
|
"tensorflow",
|
||||||
|
"librosa",
|
||||||
|
), "Unexpected backend {}".format(stft_backend)
|
||||||
if stft_backend == "tensorflow":
|
if stft_backend == "tensorflow":
|
||||||
return WaveformInputProvider(params)
|
return WaveformInputProvider(params)
|
||||||
else:
|
else:
|
||||||
@@ -114,7 +121,7 @@ class InputProviderFactory(object):
|
|||||||
|
|
||||||
|
|
||||||
class EstimatorSpecBuilder(object):
|
class EstimatorSpecBuilder(object):
|
||||||
""" A builder class that allows to builds a multitrack unet model
|
"""A builder class that allows to builds a multitrack unet model
|
||||||
estimator. The built model estimator has a different behaviour when
|
estimator. The built model estimator has a different behaviour when
|
||||||
used in a train/eval mode and in predict mode.
|
used in a train/eval mode and in predict mode.
|
||||||
|
|
||||||
@@ -138,22 +145,22 @@ class EstimatorSpecBuilder(object):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
# Supported model functions.
|
# Supported model functions.
|
||||||
DEFAULT_MODEL = 'unet.unet'
|
DEFAULT_MODEL = "unet.unet"
|
||||||
|
|
||||||
# Supported loss functions.
|
# Supported loss functions.
|
||||||
L1_MASK = 'L1_mask'
|
L1_MASK = "L1_mask"
|
||||||
WEIGHTED_L1_MASK = 'weighted_L1_mask'
|
WEIGHTED_L1_MASK = "weighted_L1_mask"
|
||||||
|
|
||||||
# Supported optimizers.
|
# Supported optimizers.
|
||||||
ADADELTA = 'Adadelta'
|
ADADELTA = "Adadelta"
|
||||||
SGD = 'SGD'
|
SGD = "SGD"
|
||||||
|
|
||||||
# Math constants.
|
# Math constants.
|
||||||
WINDOW_COMPENSATION_FACTOR = 2./3.
|
WINDOW_COMPENSATION_FACTOR = 2.0 / 3.0
|
||||||
EPSILON = 1e-10
|
EPSILON = 1e-10
|
||||||
|
|
||||||
def __init__(self, features, params):
|
def __init__(self, features, params):
|
||||||
""" Default constructor. Depending on built model
|
"""Default constructor. Depending on built model
|
||||||
usage, the provided features should be different:
|
usage, the provided features should be different:
|
||||||
|
|
||||||
* In train/eval mode: features is a dictionary with a
|
* In train/eval mode: features is a dictionary with a
|
||||||
@@ -170,20 +177,20 @@ class EstimatorSpecBuilder(object):
|
|||||||
self._features = features
|
self._features = features
|
||||||
self._params = params
|
self._params = params
|
||||||
# Get instrument name.
|
# Get instrument name.
|
||||||
self._mix_name = params['mix_name']
|
self._mix_name = params["mix_name"]
|
||||||
self._instruments = params['instrument_list']
|
self._instruments = params["instrument_list"]
|
||||||
# Get STFT/signals parameters
|
# Get STFT/signals parameters
|
||||||
self._n_channels = params['n_channels']
|
self._n_channels = params["n_channels"]
|
||||||
self._T = params['T']
|
self._T = params["T"]
|
||||||
self._F = params['F']
|
self._F = params["F"]
|
||||||
self._frame_length = params['frame_length']
|
self._frame_length = params["frame_length"]
|
||||||
self._frame_step = params['frame_step']
|
self._frame_step = params["frame_step"]
|
||||||
|
|
||||||
def include_stft_computations(self):
|
def include_stft_computations(self):
|
||||||
return self._params["stft_backend"] == "tensorflow"
|
return self._params["stft_backend"] == "tensorflow"
|
||||||
|
|
||||||
def _build_model_outputs(self):
|
def _build_model_outputs(self):
|
||||||
""" Created a batch_sizexTxFxn_channels input tensor containing
|
"""Created a batch_sizexTxFxn_channels input tensor containing
|
||||||
mix magnitude spectrogram, then an output dict from it according
|
mix magnitude spectrogram, then an output dict from it according
|
||||||
to the selected model in internal parameters.
|
to the selected model in internal parameters.
|
||||||
|
|
||||||
@@ -192,22 +199,21 @@ class EstimatorSpecBuilder(object):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
input_tensor = self.spectrogram_feature
|
input_tensor = self.spectrogram_feature
|
||||||
model = self._params.get('model', None)
|
model = self._params.get("model", None)
|
||||||
if model is not None:
|
if model is not None:
|
||||||
model_type = model.get('type', self.DEFAULT_MODEL)
|
model_type = model.get("type", self.DEFAULT_MODEL)
|
||||||
else:
|
else:
|
||||||
model_type = self.DEFAULT_MODEL
|
model_type = self.DEFAULT_MODEL
|
||||||
try:
|
try:
|
||||||
apply_model = get_model_function(model_type)
|
apply_model = get_model_function(model_type)
|
||||||
except ModuleNotFoundError:
|
except ModuleNotFoundError:
|
||||||
raise ValueError(f'No model function {model_type} found')
|
raise ValueError(f"No model function {model_type} found")
|
||||||
self._model_outputs = apply_model(
|
self._model_outputs = apply_model(
|
||||||
input_tensor,
|
input_tensor, self._instruments, self._params["model"]["params"]
|
||||||
self._instruments,
|
)
|
||||||
self._params['model']['params'])
|
|
||||||
|
|
||||||
def _build_loss(self, labels):
|
def _build_loss(self, labels):
|
||||||
""" Construct tensorflow loss and metrics
|
"""Construct tensorflow loss and metrics
|
||||||
|
|
||||||
:param output_dict: dictionary of network outputs (key: instrument
|
:param output_dict: dictionary of network outputs (key: instrument
|
||||||
name, value: estimated spectrogram of the instrument)
|
name, value: estimated spectrogram of the instrument)
|
||||||
@@ -216,7 +222,7 @@ class EstimatorSpecBuilder(object):
|
|||||||
:returns: tensorflow (loss, metrics) tuple.
|
:returns: tensorflow (loss, metrics) tuple.
|
||||||
"""
|
"""
|
||||||
output_dict = self.model_outputs
|
output_dict = self.model_outputs
|
||||||
loss_type = self._params.get('loss_type', self.L1_MASK)
|
loss_type = self._params.get("loss_type", self.L1_MASK)
|
||||||
if loss_type == self.L1_MASK:
|
if loss_type == self.L1_MASK:
|
||||||
losses = {
|
losses = {
|
||||||
name: tf.reduce_mean(tf.abs(output - labels[name]))
|
name: tf.reduce_mean(tf.abs(output - labels[name]))
|
||||||
@@ -225,11 +231,9 @@ class EstimatorSpecBuilder(object):
|
|||||||
elif loss_type == self.WEIGHTED_L1_MASK:
|
elif loss_type == self.WEIGHTED_L1_MASK:
|
||||||
losses = {
|
losses = {
|
||||||
name: tf.reduce_mean(
|
name: tf.reduce_mean(
|
||||||
tf.reduce_mean(
|
tf.reduce_mean(labels[name], axis=[1, 2, 3], keep_dims=True)
|
||||||
labels[name],
|
* tf.abs(output - labels[name])
|
||||||
axis=[1, 2, 3],
|
)
|
||||||
keep_dims=True) *
|
|
||||||
tf.abs(output - labels[name]))
|
|
||||||
for name, output in output_dict.items()
|
for name, output in output_dict.items()
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
@@ -237,20 +241,20 @@ class EstimatorSpecBuilder(object):
|
|||||||
loss = tf.reduce_sum(list(losses.values()))
|
loss = tf.reduce_sum(list(losses.values()))
|
||||||
# Add metrics for monitoring each instrument.
|
# Add metrics for monitoring each instrument.
|
||||||
metrics = {k: tf.compat.v1.metrics.mean(v) for k, v in losses.items()}
|
metrics = {k: tf.compat.v1.metrics.mean(v) for k, v in losses.items()}
|
||||||
metrics['absolute_difference'] = tf.compat.v1.metrics.mean(loss)
|
metrics["absolute_difference"] = tf.compat.v1.metrics.mean(loss)
|
||||||
return loss, metrics
|
return loss, metrics
|
||||||
|
|
||||||
def _build_optimizer(self):
|
def _build_optimizer(self):
|
||||||
""" Builds an optimizer instance from internal parameter values.
|
"""Builds an optimizer instance from internal parameter values.
|
||||||
|
|
||||||
Default to AdamOptimizer if not specified.
|
Default to AdamOptimizer if not specified.
|
||||||
|
|
||||||
:returns: Optimizer instance from internal configuration.
|
:returns: Optimizer instance from internal configuration.
|
||||||
"""
|
"""
|
||||||
name = self._params.get('optimizer')
|
name = self._params.get("optimizer")
|
||||||
if name == self.ADADELTA:
|
if name == self.ADADELTA:
|
||||||
return tf.compat.v1.train.AdadeltaOptimizer()
|
return tf.compat.v1.train.AdadeltaOptimizer()
|
||||||
rate = self._params['learning_rate']
|
rate = self._params["learning_rate"]
|
||||||
if name == self.SGD:
|
if name == self.SGD:
|
||||||
return tf.compat.v1.train.GradientDescentOptimizer(rate)
|
return tf.compat.v1.train.GradientDescentOptimizer(rate)
|
||||||
return tf.compat.v1.train.AdamOptimizer(rate)
|
return tf.compat.v1.train.AdamOptimizer(rate)
|
||||||
@@ -261,15 +265,15 @@ class EstimatorSpecBuilder(object):
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def stft_name(self):
|
def stft_name(self):
|
||||||
return f'{self._mix_name}_stft'
|
return f"{self._mix_name}_stft"
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def spectrogram_name(self):
|
def spectrogram_name(self):
|
||||||
return f'{self._mix_name}_spectrogram'
|
return f"{self._mix_name}_spectrogram"
|
||||||
|
|
||||||
def _build_stft_feature(self):
|
def _build_stft_feature(self):
|
||||||
""" Compute STFT of waveform and slice the STFT in segment
|
"""Compute STFT of waveform and slice the STFT in segment
|
||||||
with the right length to feed the network.
|
with the right length to feed the network.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
stft_name = self.stft_name
|
stft_name = self.stft_name
|
||||||
@@ -277,25 +281,30 @@ class EstimatorSpecBuilder(object):
|
|||||||
|
|
||||||
if stft_name not in self._features:
|
if stft_name not in self._features:
|
||||||
# pad input with a frame of zeros
|
# pad input with a frame of zeros
|
||||||
waveform = tf.concat([
|
waveform = tf.concat(
|
||||||
tf.zeros((self._frame_length, self._n_channels)),
|
[
|
||||||
self._features['waveform']
|
tf.zeros((self._frame_length, self._n_channels)),
|
||||||
],
|
self._features["waveform"],
|
||||||
0
|
],
|
||||||
)
|
0,
|
||||||
|
)
|
||||||
stft_feature = tf.transpose(
|
stft_feature = tf.transpose(
|
||||||
stft(
|
stft(
|
||||||
tf.transpose(waveform),
|
tf.transpose(waveform),
|
||||||
self._frame_length,
|
self._frame_length,
|
||||||
self._frame_step,
|
self._frame_step,
|
||||||
window_fn=lambda frame_length, dtype: (
|
window_fn=lambda frame_length, dtype: (
|
||||||
hann_window(frame_length, periodic=True, dtype=dtype)),
|
hann_window(frame_length, periodic=True, dtype=dtype)
|
||||||
pad_end=True),
|
),
|
||||||
perm=[1, 2, 0])
|
pad_end=True,
|
||||||
self._features[f'{self._mix_name}_stft'] = stft_feature
|
),
|
||||||
|
perm=[1, 2, 0],
|
||||||
|
)
|
||||||
|
self._features[f"{self._mix_name}_stft"] = stft_feature
|
||||||
if spec_name not in self._features:
|
if spec_name not in self._features:
|
||||||
self._features[spec_name] = tf.abs(
|
self._features[spec_name] = tf.abs(
|
||||||
pad_and_partition(self._features[stft_name], self._T))[:, :, :self._F, :]
|
pad_and_partition(self._features[stft_name], self._T)
|
||||||
|
)[:, :, : self._F, :]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def model_outputs(self):
|
def model_outputs(self):
|
||||||
@@ -334,25 +343,29 @@ class EstimatorSpecBuilder(object):
|
|||||||
return self._masked_stfts
|
return self._masked_stfts
|
||||||
|
|
||||||
def _inverse_stft(self, stft_t, time_crop=None):
|
def _inverse_stft(self, stft_t, time_crop=None):
|
||||||
""" Inverse and reshape the given STFT
|
"""Inverse and reshape the given STFT
|
||||||
|
|
||||||
:param stft_t: input STFT
|
:param stft_t: input STFT
|
||||||
:returns: inverse STFT (waveform)
|
:returns: inverse STFT (waveform)
|
||||||
"""
|
"""
|
||||||
inversed = inverse_stft(
|
inversed = (
|
||||||
tf.transpose(stft_t, perm=[2, 0, 1]),
|
inverse_stft(
|
||||||
self._frame_length,
|
tf.transpose(stft_t, perm=[2, 0, 1]),
|
||||||
self._frame_step,
|
self._frame_length,
|
||||||
window_fn=lambda frame_length, dtype: (
|
self._frame_step,
|
||||||
hann_window(frame_length, periodic=True, dtype=dtype))
|
window_fn=lambda frame_length, dtype: (
|
||||||
) * self.WINDOW_COMPENSATION_FACTOR
|
hann_window(frame_length, periodic=True, dtype=dtype)
|
||||||
|
),
|
||||||
|
)
|
||||||
|
* self.WINDOW_COMPENSATION_FACTOR
|
||||||
|
)
|
||||||
reshaped = tf.transpose(inversed)
|
reshaped = tf.transpose(inversed)
|
||||||
if time_crop is None:
|
if time_crop is None:
|
||||||
time_crop = tf.shape(self._features['waveform'])[0]
|
time_crop = tf.shape(self._features["waveform"])[0]
|
||||||
return reshaped[self._frame_length:self._frame_length+time_crop, :]
|
return reshaped[self._frame_length : self._frame_length + time_crop, :]
|
||||||
|
|
||||||
def _build_mwf_output_waveform(self):
|
def _build_mwf_output_waveform(self):
|
||||||
""" Perform separation with multichannel Wiener Filtering using Norbert.
|
"""Perform separation with multichannel Wiener Filtering using Norbert.
|
||||||
Note: multichannel Wiener Filtering is not coded in Tensorflow and thus
|
Note: multichannel Wiener Filtering is not coded in Tensorflow and thus
|
||||||
may be quite slow.
|
may be quite slow.
|
||||||
|
|
||||||
@@ -360,36 +373,42 @@ class EstimatorSpecBuilder(object):
|
|||||||
value: estimated waveform of the instrument)
|
value: estimated waveform of the instrument)
|
||||||
"""
|
"""
|
||||||
import norbert # pylint: disable=import-error
|
import norbert # pylint: disable=import-error
|
||||||
|
|
||||||
output_dict = self.model_outputs
|
output_dict = self.model_outputs
|
||||||
x = self.stft_feature
|
x = self.stft_feature
|
||||||
v = tf.stack(
|
v = tf.stack(
|
||||||
[
|
[
|
||||||
pad_and_reshape(
|
pad_and_reshape(
|
||||||
output_dict[f'{instrument}_spectrogram'],
|
output_dict[f"{instrument}_spectrogram"],
|
||||||
self._frame_length,
|
self._frame_length,
|
||||||
self._F)[:tf.shape(x)[0], ...]
|
self._F,
|
||||||
|
)[: tf.shape(x)[0], ...]
|
||||||
for instrument in self._instruments
|
for instrument in self._instruments
|
||||||
],
|
],
|
||||||
axis=3)
|
axis=3,
|
||||||
|
)
|
||||||
input_args = [v, x]
|
input_args = [v, x]
|
||||||
stft_function = tf.py_function(
|
stft_function = (
|
||||||
lambda v, x: norbert.wiener(v.numpy(), x.numpy()),
|
tf.py_function(
|
||||||
input_args,
|
lambda v, x: norbert.wiener(v.numpy(), x.numpy()),
|
||||||
tf.complex64),
|
input_args,
|
||||||
|
tf.complex64,
|
||||||
|
),
|
||||||
|
)
|
||||||
return {
|
return {
|
||||||
instrument: self._inverse_stft(stft_function[0][:, :, :, k])
|
instrument: self._inverse_stft(stft_function[0][:, :, :, k])
|
||||||
for k, instrument in enumerate(self._instruments)
|
for k, instrument in enumerate(self._instruments)
|
||||||
}
|
}
|
||||||
|
|
||||||
def _extend_mask(self, mask):
|
def _extend_mask(self, mask):
|
||||||
""" Extend mask, from reduced number of frequency bin to the number of
|
"""Extend mask, from reduced number of frequency bin to the number of
|
||||||
frequency bin in the STFT.
|
frequency bin in the STFT.
|
||||||
|
|
||||||
:param mask: restricted mask
|
:param mask: restricted mask
|
||||||
:returns: extended mask
|
:returns: extended mask
|
||||||
:raise ValueError: If invalid mask_extension parameter is set.
|
:raise ValueError: If invalid mask_extension parameter is set.
|
||||||
"""
|
"""
|
||||||
extension = self._params['mask_extension']
|
extension = self._params["mask_extension"]
|
||||||
# Extend with average
|
# Extend with average
|
||||||
# (dispatch according to energy in the processed band)
|
# (dispatch according to energy in the processed band)
|
||||||
if extension == "average":
|
if extension == "average":
|
||||||
@@ -398,13 +417,9 @@ class EstimatorSpecBuilder(object):
|
|||||||
# (avoid extension artifacts but not conservative separation)
|
# (avoid extension artifacts but not conservative separation)
|
||||||
elif extension == "zeros":
|
elif extension == "zeros":
|
||||||
mask_shape = tf.shape(mask)
|
mask_shape = tf.shape(mask)
|
||||||
extension_row = tf.zeros((
|
extension_row = tf.zeros((mask_shape[0], mask_shape[1], 1, mask_shape[-1]))
|
||||||
mask_shape[0],
|
|
||||||
mask_shape[1],
|
|
||||||
1,
|
|
||||||
mask_shape[-1]))
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'Invalid mask_extension parameter {extension}')
|
raise ValueError(f"Invalid mask_extension parameter {extension}")
|
||||||
n_extra_row = self._frame_length // 2 + 1 - self._F
|
n_extra_row = self._frame_length // 2 + 1 - self._F
|
||||||
extension = tf.tile(extension_row, [1, 1, n_extra_row, 1])
|
extension = tf.tile(extension_row, [1, 1, n_extra_row, 1])
|
||||||
return tf.concat([mask, extension], axis=2)
|
return tf.concat([mask, extension], axis=2)
|
||||||
@@ -416,29 +431,31 @@ class EstimatorSpecBuilder(object):
|
|||||||
"""
|
"""
|
||||||
output_dict = self.model_outputs
|
output_dict = self.model_outputs
|
||||||
stft_feature = self.stft_feature
|
stft_feature = self.stft_feature
|
||||||
separation_exponent = self._params['separation_exponent']
|
separation_exponent = self._params["separation_exponent"]
|
||||||
output_sum = tf.reduce_sum(
|
output_sum = (
|
||||||
[e ** separation_exponent for e in output_dict.values()],
|
tf.reduce_sum(
|
||||||
axis=0
|
[e ** separation_exponent for e in output_dict.values()], axis=0
|
||||||
) + self.EPSILON
|
)
|
||||||
|
+ self.EPSILON
|
||||||
|
)
|
||||||
out = {}
|
out = {}
|
||||||
for instrument in self._instruments:
|
for instrument in self._instruments:
|
||||||
output = output_dict[f'{instrument}_spectrogram']
|
output = output_dict[f"{instrument}_spectrogram"]
|
||||||
# Compute mask with the model.
|
# Compute mask with the model.
|
||||||
instrument_mask = (output ** separation_exponent
|
instrument_mask = (
|
||||||
+ (self.EPSILON / len(output_dict))) / output_sum
|
output ** separation_exponent + (self.EPSILON / len(output_dict))
|
||||||
|
) / output_sum
|
||||||
# Extend mask;
|
# Extend mask;
|
||||||
instrument_mask = self._extend_mask(instrument_mask)
|
instrument_mask = self._extend_mask(instrument_mask)
|
||||||
# Stack back mask.
|
# Stack back mask.
|
||||||
old_shape = tf.shape(instrument_mask)
|
old_shape = tf.shape(instrument_mask)
|
||||||
new_shape = tf.concat(
|
new_shape = tf.concat(
|
||||||
[[old_shape[0] * old_shape[1]], old_shape[2:]],
|
[[old_shape[0] * old_shape[1]], old_shape[2:]], axis=0
|
||||||
axis=0)
|
)
|
||||||
instrument_mask = tf.reshape(instrument_mask, new_shape)
|
instrument_mask = tf.reshape(instrument_mask, new_shape)
|
||||||
# Remove padded part (for mask having the same size as STFT);
|
# Remove padded part (for mask having the same size as STFT);
|
||||||
|
|
||||||
instrument_mask = instrument_mask[
|
instrument_mask = instrument_mask[: tf.shape(stft_feature)[0], ...]
|
||||||
:tf.shape(stft_feature)[0], ...]
|
|
||||||
out[instrument] = instrument_mask
|
out[instrument] = instrument_mask
|
||||||
self._masks = out
|
self._masks = out
|
||||||
|
|
||||||
@@ -450,7 +467,7 @@ class EstimatorSpecBuilder(object):
|
|||||||
self._masked_stfts = out
|
self._masked_stfts = out
|
||||||
|
|
||||||
def _build_manual_output_waveform(self, masked_stft):
|
def _build_manual_output_waveform(self, masked_stft):
|
||||||
""" Perform ratio mask separation
|
"""Perform ratio mask separation
|
||||||
|
|
||||||
:param output_dict: dictionary of estimated spectrogram (key: instrument
|
:param output_dict: dictionary of estimated spectrogram (key: instrument
|
||||||
name, value: estimated spectrogram of the instrument)
|
name, value: estimated spectrogram of the instrument)
|
||||||
@@ -464,14 +481,14 @@ class EstimatorSpecBuilder(object):
|
|||||||
return output_waveform
|
return output_waveform
|
||||||
|
|
||||||
def _build_output_waveform(self, masked_stft):
|
def _build_output_waveform(self, masked_stft):
|
||||||
""" Build output waveform from given output dict in order to be used in
|
"""Build output waveform from given output dict in order to be used in
|
||||||
prediction context. Regarding of the configuration building method will
|
prediction context. Regarding of the configuration building method will
|
||||||
be using MWF.
|
be using MWF.
|
||||||
|
|
||||||
:returns: Built output waveform.
|
:returns: Built output waveform.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if self._params.get('MWF', False):
|
if self._params.get("MWF", False):
|
||||||
output_waveform = self._build_mwf_output_waveform()
|
output_waveform = self._build_mwf_output_waveform()
|
||||||
else:
|
else:
|
||||||
output_waveform = self._build_manual_output_waveform(masked_stft)
|
output_waveform = self._build_manual_output_waveform(masked_stft)
|
||||||
@@ -483,11 +500,11 @@ class EstimatorSpecBuilder(object):
|
|||||||
else:
|
else:
|
||||||
self._outputs = self.masked_stfts
|
self._outputs = self.masked_stfts
|
||||||
|
|
||||||
if 'audio_id' in self._features:
|
if "audio_id" in self._features:
|
||||||
self._outputs['audio_id'] = self._features['audio_id']
|
self._outputs["audio_id"] = self._features["audio_id"]
|
||||||
|
|
||||||
def build_predict_model(self):
|
def build_predict_model(self):
|
||||||
""" Builder interface for creating model instance that aims to perform
|
"""Builder interface for creating model instance that aims to perform
|
||||||
prediction / inference over given track. The output of such estimator
|
prediction / inference over given track. The output of such estimator
|
||||||
will be a dictionary with a "<instrument>" key per separated instrument
|
will be a dictionary with a "<instrument>" key per separated instrument
|
||||||
, associated to the estimated separated waveform of the instrument.
|
, associated to the estimated separated waveform of the instrument.
|
||||||
@@ -496,11 +513,11 @@ class EstimatorSpecBuilder(object):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
return tf.estimator.EstimatorSpec(
|
return tf.estimator.EstimatorSpec(
|
||||||
tf.estimator.ModeKeys.PREDICT,
|
tf.estimator.ModeKeys.PREDICT, predictions=self.outputs
|
||||||
predictions=self.outputs)
|
)
|
||||||
|
|
||||||
def build_evaluation_model(self, labels):
|
def build_evaluation_model(self, labels):
|
||||||
""" Builder interface for creating model instance that aims to perform
|
"""Builder interface for creating model instance that aims to perform
|
||||||
model evaluation. The output of such estimator will be a dictionary
|
model evaluation. The output of such estimator will be a dictionary
|
||||||
with a key "<instrument>_spectrogram" per separated instrument,
|
with a key "<instrument>_spectrogram" per separated instrument,
|
||||||
associated to the estimated separated instrument magnitude spectrogram.
|
associated to the estimated separated instrument magnitude spectrogram.
|
||||||
@@ -510,12 +527,11 @@ class EstimatorSpecBuilder(object):
|
|||||||
"""
|
"""
|
||||||
loss, metrics = self._build_loss(labels)
|
loss, metrics = self._build_loss(labels)
|
||||||
return tf.estimator.EstimatorSpec(
|
return tf.estimator.EstimatorSpec(
|
||||||
tf.estimator.ModeKeys.EVAL,
|
tf.estimator.ModeKeys.EVAL, loss=loss, eval_metric_ops=metrics
|
||||||
loss=loss,
|
)
|
||||||
eval_metric_ops=metrics)
|
|
||||||
|
|
||||||
def build_train_model(self, labels):
|
def build_train_model(self, labels):
|
||||||
""" Builder interface for creating model instance that aims to perform
|
"""Builder interface for creating model instance that aims to perform
|
||||||
model training. The output of such estimator will be a dictionary
|
model training. The output of such estimator will be a dictionary
|
||||||
with a key "<instrument>_spectrogram" per separated instrument,
|
with a key "<instrument>_spectrogram" per separated instrument,
|
||||||
associated to the estimated separated instrument magnitude spectrogram.
|
associated to the estimated separated instrument magnitude spectrogram.
|
||||||
@@ -526,8 +542,8 @@ class EstimatorSpecBuilder(object):
|
|||||||
loss, metrics = self._build_loss(labels)
|
loss, metrics = self._build_loss(labels)
|
||||||
optimizer = self._build_optimizer()
|
optimizer = self._build_optimizer()
|
||||||
train_operation = optimizer.minimize(
|
train_operation = optimizer.minimize(
|
||||||
loss=loss,
|
loss=loss, global_step=tf.compat.v1.train.get_global_step()
|
||||||
global_step=tf.compat.v1.train.get_global_step())
|
)
|
||||||
return tf.estimator.EstimatorSpec(
|
return tf.estimator.EstimatorSpec(
|
||||||
mode=tf.estimator.ModeKeys.TRAIN,
|
mode=tf.estimator.ModeKeys.TRAIN,
|
||||||
loss=loss,
|
loss=loss,
|
||||||
@@ -540,9 +556,9 @@ def model_fn(features, labels, mode, params, config):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
:param features:
|
:param features:
|
||||||
:param labels:
|
:param labels:
|
||||||
:param mode: Estimator mode.
|
:param mode: Estimator mode.
|
||||||
:param params:
|
:param params:
|
||||||
:param config: TF configuration (not used).
|
:param config: TF configuration (not used).
|
||||||
:returns: Built EstimatorSpec.
|
:returns: Built EstimatorSpec.
|
||||||
:raise ValueError: If estimator mode is not supported.
|
:raise ValueError: If estimator mode is not supported.
|
||||||
@@ -554,4 +570,4 @@ def model_fn(features, labels, mode, params, config):
|
|||||||
return builder.build_evaluation_model(labels)
|
return builder.build_evaluation_model(labels)
|
||||||
elif mode == tf.estimator.ModeKeys.TRAIN:
|
elif mode == tf.estimator.ModeKeys.TRAIN:
|
||||||
return builder.build_train_model(labels)
|
return builder.build_train_model(labels)
|
||||||
raise ValueError(f'Unknown mode {mode}')
|
raise ValueError(f"Unknown mode {mode}")
|
||||||
|
|||||||
@@ -8,39 +8,40 @@ from typing import Callable, Dict, Iterable, Optional
|
|||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
def apply(
|
def apply(
|
||||||
function: Callable,
|
function: Callable,
|
||||||
input_tensor: tf.Tensor,
|
input_tensor: tf.Tensor,
|
||||||
instruments: Iterable[str],
|
instruments: Iterable[str],
|
||||||
params: Optional[Dict] = None) -> Dict:
|
params: Optional[Dict] = None,
|
||||||
|
) -> Dict:
|
||||||
"""
|
"""
|
||||||
Apply given function to the input tensor.
|
Apply given function to the input tensor.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
function:
|
function:
|
||||||
Function to be applied to tensor.
|
Function to be applied to tensor.
|
||||||
input_tensor (tensorflow.Tensor):
|
input_tensor (tensorflow.Tensor):
|
||||||
Tensor to apply blstm to.
|
Tensor to apply blstm to.
|
||||||
instruments (Iterable[str]):
|
instruments (Iterable[str]):
|
||||||
Iterable that provides a collection of instruments.
|
Iterable that provides a collection of instruments.
|
||||||
params:
|
params:
|
||||||
(Optional) dict of BLSTM parameters.
|
(Optional) dict of BLSTM parameters.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Created output tensor dict.
|
Created output tensor dict.
|
||||||
"""
|
"""
|
||||||
output_dict: Dict = {}
|
output_dict: Dict = {}
|
||||||
for instrument in instruments:
|
for instrument in instruments:
|
||||||
out_name = f'{instrument}_spectrogram'
|
out_name = f"{instrument}_spectrogram"
|
||||||
output_dict[out_name] = function(
|
output_dict[out_name] = function(
|
||||||
input_tensor,
|
input_tensor, output_name=out_name, params=params or {}
|
||||||
output_name=out_name,
|
)
|
||||||
params=params or {})
|
|
||||||
return output_dict
|
return output_dict
|
||||||
|
|||||||
@@ -22,12 +22,9 @@
|
|||||||
|
|
||||||
from typing import Dict, Optional
|
from typing import Dict, Optional
|
||||||
|
|
||||||
from . import apply
|
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from tensorflow.compat.v1.keras.initializers import he_uniform
|
from tensorflow.compat.v1.keras.initializers import he_uniform
|
||||||
from tensorflow.compat.v1.keras.layers import CuDNNLSTM
|
from tensorflow.compat.v1.keras.layers import CuDNNLSTM
|
||||||
from tensorflow.keras.layers import (
|
from tensorflow.keras.layers import (
|
||||||
@@ -35,45 +32,48 @@ from tensorflow.keras.layers import (
|
|||||||
Dense,
|
Dense,
|
||||||
Flatten,
|
Flatten,
|
||||||
Reshape,
|
Reshape,
|
||||||
TimeDistributed)
|
TimeDistributed,
|
||||||
|
)
|
||||||
|
|
||||||
|
from . import apply
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
def apply_blstm(
|
def apply_blstm(
|
||||||
input_tensor: tf.Tensor,
|
input_tensor: tf.Tensor, output_name: str = "output", params: Optional[Dict] = None
|
||||||
output_name: str = 'output',
|
) -> tf.Tensor:
|
||||||
params: Optional[Dict] = None) -> tf.Tensor:
|
|
||||||
"""
|
"""
|
||||||
Apply BLSTM to the given input_tensor.
|
Apply BLSTM to the given input_tensor.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
input_tensor (tensorflow.Tensor):
|
input_tensor (tensorflow.Tensor):
|
||||||
Input of the model.
|
Input of the model.
|
||||||
output_name (str):
|
output_name (str):
|
||||||
(Optional) name of the output, default to 'output'.
|
(Optional) name of the output, default to 'output'.
|
||||||
params (Optional[Dict]):
|
params (Optional[Dict]):
|
||||||
(Optional) dict of BLSTM parameters.
|
(Optional) dict of BLSTM parameters.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
Output tensor.
|
Output tensor.
|
||||||
"""
|
"""
|
||||||
if params is None:
|
if params is None:
|
||||||
params = {}
|
params = {}
|
||||||
units: int = params.get('lstm_units', 250)
|
units: int = params.get("lstm_units", 250)
|
||||||
kernel_initializer = he_uniform(seed=50)
|
kernel_initializer = he_uniform(seed=50)
|
||||||
flatten_input = TimeDistributed(Flatten())((input_tensor))
|
flatten_input = TimeDistributed(Flatten())((input_tensor))
|
||||||
|
|
||||||
def create_bidirectional():
|
def create_bidirectional():
|
||||||
return Bidirectional(
|
return Bidirectional(
|
||||||
CuDNNLSTM(
|
CuDNNLSTM(
|
||||||
units,
|
units, kernel_initializer=kernel_initializer, return_sequences=True
|
||||||
kernel_initializer=kernel_initializer,
|
)
|
||||||
return_sequences=True))
|
)
|
||||||
|
|
||||||
l1 = create_bidirectional()((flatten_input))
|
l1 = create_bidirectional()((flatten_input))
|
||||||
l2 = create_bidirectional()((l1))
|
l2 = create_bidirectional()((l1))
|
||||||
@@ -81,17 +81,18 @@ def apply_blstm(
|
|||||||
dense = TimeDistributed(
|
dense = TimeDistributed(
|
||||||
Dense(
|
Dense(
|
||||||
int(flatten_input.shape[2]),
|
int(flatten_input.shape[2]),
|
||||||
activation='relu',
|
activation="relu",
|
||||||
kernel_initializer=kernel_initializer))((l3))
|
kernel_initializer=kernel_initializer,
|
||||||
|
)
|
||||||
|
)((l3))
|
||||||
output: tf.Tensor = TimeDistributed(
|
output: tf.Tensor = TimeDistributed(
|
||||||
Reshape(input_tensor.shape[2:]),
|
Reshape(input_tensor.shape[2:]), name=output_name
|
||||||
name=output_name)(dense)
|
)(dense)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
def blstm(
|
def blstm(
|
||||||
input_tensor: tf.Tensor,
|
input_tensor: tf.Tensor, output_name: str = "output", params: Optional[Dict] = None
|
||||||
output_name: str = 'output',
|
) -> tf.Tensor:
|
||||||
params: Optional[Dict] = None) -> tf.Tensor:
|
|
||||||
""" Model function applier. """
|
""" Model function applier. """
|
||||||
return apply(apply_blstm, input_tensor, output_name, params)
|
return apply(apply_blstm, input_tensor, output_name, params)
|
||||||
|
|||||||
@@ -16,95 +16,95 @@
|
|||||||
from functools import partial
|
from functools import partial
|
||||||
from typing import Any, Dict, Iterable, Optional
|
from typing import Any, Dict, Iterable, Optional
|
||||||
|
|
||||||
from . import apply
|
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
from tensorflow.compat.v1 import logging
|
||||||
|
from tensorflow.compat.v1.keras.initializers import he_uniform
|
||||||
from tensorflow.keras.layers import (
|
from tensorflow.keras.layers import (
|
||||||
|
ELU,
|
||||||
BatchNormalization,
|
BatchNormalization,
|
||||||
Concatenate,
|
Concatenate,
|
||||||
Conv2D,
|
Conv2D,
|
||||||
Conv2DTranspose,
|
Conv2DTranspose,
|
||||||
Dropout,
|
Dropout,
|
||||||
ELU,
|
|
||||||
LeakyReLU,
|
LeakyReLU,
|
||||||
Multiply,
|
Multiply,
|
||||||
ReLU,
|
ReLU,
|
||||||
Softmax)
|
Softmax,
|
||||||
from tensorflow.compat.v1 import logging
|
)
|
||||||
from tensorflow.compat.v1.keras.initializers import he_uniform
|
|
||||||
|
from . import apply
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
def _get_conv_activation_layer(params: Dict) -> Any:
|
def _get_conv_activation_layer(params: Dict) -> Any:
|
||||||
"""
|
"""
|
||||||
> To be documented.
|
> To be documented.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
params (Dict):
|
params (Dict):
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Any:
|
Any:
|
||||||
Required Activation function.
|
Required Activation function.
|
||||||
"""
|
"""
|
||||||
conv_activation: str = params.get('conv_activation')
|
conv_activation: str = params.get("conv_activation")
|
||||||
if conv_activation == 'ReLU':
|
if conv_activation == "ReLU":
|
||||||
return ReLU()
|
return ReLU()
|
||||||
elif conv_activation == 'ELU':
|
elif conv_activation == "ELU":
|
||||||
return ELU()
|
return ELU()
|
||||||
return LeakyReLU(0.2)
|
return LeakyReLU(0.2)
|
||||||
|
|
||||||
|
|
||||||
def _get_deconv_activation_layer(params: Dict) -> Any:
|
def _get_deconv_activation_layer(params: Dict) -> Any:
|
||||||
"""
|
"""
|
||||||
> To be documented.
|
> To be documented.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
params (Dict):
|
params (Dict):
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Any:
|
Any:
|
||||||
Required Activation function.
|
Required Activation function.
|
||||||
"""
|
"""
|
||||||
deconv_activation: str = params.get('deconv_activation')
|
deconv_activation: str = params.get("deconv_activation")
|
||||||
if deconv_activation == 'LeakyReLU':
|
if deconv_activation == "LeakyReLU":
|
||||||
return LeakyReLU(0.2)
|
return LeakyReLU(0.2)
|
||||||
elif deconv_activation == 'ELU':
|
elif deconv_activation == "ELU":
|
||||||
return ELU()
|
return ELU()
|
||||||
return ReLU()
|
return ReLU()
|
||||||
|
|
||||||
|
|
||||||
def apply_unet(
|
def apply_unet(
|
||||||
input_tensor: tf.Tensor,
|
input_tensor: tf.Tensor,
|
||||||
output_name: str = 'output',
|
output_name: str = "output",
|
||||||
params: Optional[Dict] = None,
|
params: Optional[Dict] = None,
|
||||||
output_mask_logit: bool = False) -> Any:
|
output_mask_logit: bool = False,
|
||||||
|
) -> Any:
|
||||||
"""
|
"""
|
||||||
Apply a convolutionnal U-net to model a single instrument (one U-net
|
Apply a convolutionnal U-net to model a single instrument (one U-net
|
||||||
is used for each instrument).
|
is used for each instrument).
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
input_tensor (tensorflow.Tensor):
|
input_tensor (tensorflow.Tensor):
|
||||||
output_name (str):
|
output_name (str):
|
||||||
params (Optional[Dict]):
|
params (Optional[Dict]):
|
||||||
output_mask_logit (bool):
|
output_mask_logit (bool):
|
||||||
"""
|
"""
|
||||||
logging.info(f'Apply unet for {output_name}')
|
logging.info(f"Apply unet for {output_name}")
|
||||||
conv_n_filters = params.get('conv_n_filters', [16, 32, 64, 128, 256, 512])
|
conv_n_filters = params.get("conv_n_filters", [16, 32, 64, 128, 256, 512])
|
||||||
conv_activation_layer = _get_conv_activation_layer(params)
|
conv_activation_layer = _get_conv_activation_layer(params)
|
||||||
deconv_activation_layer = _get_deconv_activation_layer(params)
|
deconv_activation_layer = _get_deconv_activation_layer(params)
|
||||||
kernel_initializer = he_uniform(seed=50)
|
kernel_initializer = he_uniform(seed=50)
|
||||||
conv2d_factory = partial(
|
conv2d_factory = partial(
|
||||||
Conv2D,
|
Conv2D, strides=(2, 2), padding="same", kernel_initializer=kernel_initializer
|
||||||
strides=(2, 2),
|
)
|
||||||
padding='same',
|
|
||||||
kernel_initializer=kernel_initializer)
|
|
||||||
# First layer.
|
# First layer.
|
||||||
conv1 = conv2d_factory(conv_n_filters[0], (5, 5))(input_tensor)
|
conv1 = conv2d_factory(conv_n_filters[0], (5, 5))(input_tensor)
|
||||||
batch1 = BatchNormalization(axis=-1)(conv1)
|
batch1 = BatchNormalization(axis=-1)(conv1)
|
||||||
@@ -134,8 +134,9 @@ def apply_unet(
|
|||||||
conv2d_transpose_factory = partial(
|
conv2d_transpose_factory = partial(
|
||||||
Conv2DTranspose,
|
Conv2DTranspose,
|
||||||
strides=(2, 2),
|
strides=(2, 2),
|
||||||
padding='same',
|
padding="same",
|
||||||
kernel_initializer=kernel_initializer)
|
kernel_initializer=kernel_initializer,
|
||||||
|
)
|
||||||
#
|
#
|
||||||
up1 = conv2d_transpose_factory(conv_n_filters[4], (5, 5))((conv6))
|
up1 = conv2d_transpose_factory(conv_n_filters[4], (5, 5))((conv6))
|
||||||
up1 = deconv_activation_layer(up1)
|
up1 = deconv_activation_layer(up1)
|
||||||
@@ -174,60 +175,60 @@ def apply_unet(
|
|||||||
2,
|
2,
|
||||||
(4, 4),
|
(4, 4),
|
||||||
dilation_rate=(2, 2),
|
dilation_rate=(2, 2),
|
||||||
activation='sigmoid',
|
activation="sigmoid",
|
||||||
padding='same',
|
padding="same",
|
||||||
kernel_initializer=kernel_initializer)((batch12))
|
kernel_initializer=kernel_initializer,
|
||||||
|
)((batch12))
|
||||||
output = Multiply(name=output_name)([up7, input_tensor])
|
output = Multiply(name=output_name)([up7, input_tensor])
|
||||||
return output
|
return output
|
||||||
return Conv2D(
|
return Conv2D(
|
||||||
2,
|
2,
|
||||||
(4, 4),
|
(4, 4),
|
||||||
dilation_rate=(2, 2),
|
dilation_rate=(2, 2),
|
||||||
padding='same',
|
padding="same",
|
||||||
kernel_initializer=kernel_initializer)((batch12))
|
kernel_initializer=kernel_initializer,
|
||||||
|
)((batch12))
|
||||||
|
|
||||||
|
|
||||||
def unet(
|
def unet(
|
||||||
input_tensor: tf.Tensor,
|
input_tensor: tf.Tensor, instruments: Iterable[str], params: Optional[Dict] = None
|
||||||
instruments: Iterable[str],
|
) -> Dict:
|
||||||
params: Optional[Dict] = None) -> Dict:
|
|
||||||
""" Model function applier. """
|
""" Model function applier. """
|
||||||
return apply(apply_unet, input_tensor, instruments, params)
|
return apply(apply_unet, input_tensor, instruments, params)
|
||||||
|
|
||||||
|
|
||||||
def softmax_unet(
|
def softmax_unet(
|
||||||
input_tensor: tf.Tensor,
|
input_tensor: tf.Tensor, instruments: Iterable[str], params: Optional[Dict] = None
|
||||||
instruments: Iterable[str],
|
) -> Dict:
|
||||||
params: Optional[Dict] = None) -> Dict:
|
|
||||||
"""
|
"""
|
||||||
Apply softmax to multitrack unet in order to have mask suming to one.
|
Apply softmax to multitrack unet in order to have mask suming to one.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
input_tensor (tensorflow.Tensor):
|
input_tensor (tensorflow.Tensor):
|
||||||
Tensor to apply blstm to.
|
Tensor to apply blstm to.
|
||||||
instruments (Iterable[str]):
|
instruments (Iterable[str]):
|
||||||
Iterable that provides a collection of instruments.
|
Iterable that provides a collection of instruments.
|
||||||
params (Optional[Dict]):
|
params (Optional[Dict]):
|
||||||
(Optional) dict of BLSTM parameters.
|
(Optional) dict of BLSTM parameters.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Dict:
|
Dict:
|
||||||
Created output tensor dict.
|
Created output tensor dict.
|
||||||
"""
|
"""
|
||||||
logit_mask_list = []
|
logit_mask_list = []
|
||||||
for instrument in instruments:
|
for instrument in instruments:
|
||||||
out_name = f'{instrument}_spectrogram'
|
out_name = f"{instrument}_spectrogram"
|
||||||
logit_mask_list.append(
|
logit_mask_list.append(
|
||||||
apply_unet(
|
apply_unet(
|
||||||
input_tensor,
|
input_tensor,
|
||||||
output_name=out_name,
|
output_name=out_name,
|
||||||
params=params,
|
params=params,
|
||||||
output_mask_logit=True))
|
output_mask_logit=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
masks = Softmax(axis=4)(tf.stack(logit_mask_list, axis=4))
|
masks = Softmax(axis=4)(tf.stack(logit_mask_list, axis=4))
|
||||||
output_dict = {}
|
output_dict = {}
|
||||||
for i, instrument in enumerate(instruments):
|
for i, instrument in enumerate(instruments):
|
||||||
out_name = f'{instrument}_spectrogram'
|
out_name = f"{instrument}_spectrogram"
|
||||||
output_dict[out_name] = Multiply(name=out_name)([
|
output_dict[out_name] = Multiply(name=out_name)([masks[..., i], input_tensor])
|
||||||
masks[..., i],
|
|
||||||
input_tensor])
|
|
||||||
return output_dict
|
return output_dict
|
||||||
|
|||||||
@@ -17,57 +17,57 @@ from abc import ABC, abstractmethod
|
|||||||
from os import environ, makedirs
|
from os import environ, makedirs
|
||||||
from os.path import exists, isabs, join, sep
|
from os.path import exists, isabs, join, sep
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
class ModelProvider(ABC):
|
class ModelProvider(ABC):
|
||||||
"""
|
"""
|
||||||
A ModelProvider manages model files on disk and
|
A ModelProvider manages model files on disk and
|
||||||
file download is not available.
|
file download is not available.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
DEFAULT_MODEL_PATH: str = environ.get('MODEL_PATH', 'pretrained_models')
|
DEFAULT_MODEL_PATH: str = environ.get("MODEL_PATH", "pretrained_models")
|
||||||
MODEL_PROBE_PATH: str = '.probe'
|
MODEL_PROBE_PATH: str = ".probe"
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def download(_, name: str, path: str) -> None:
|
def download(_, name: str, path: str) -> None:
|
||||||
"""
|
"""
|
||||||
Download model denoted by the given name to disk.
|
Download model denoted by the given name to disk.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
name (str):
|
name (str):
|
||||||
Name of the model to download.
|
Name of the model to download.
|
||||||
path (str):
|
path (str):
|
||||||
Path of the directory to save model into.
|
Path of the directory to save model into.
|
||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def writeProbe(directory: str) -> None:
|
def writeProbe(directory: str) -> None:
|
||||||
"""
|
"""
|
||||||
Write a model probe file into the given directory.
|
Write a model probe file into the given directory.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
directory (str):
|
directory (str):
|
||||||
Directory to write probe into.
|
Directory to write probe into.
|
||||||
"""
|
"""
|
||||||
probe: str = join(directory, ModelProvider.MODEL_PROBE_PATH)
|
probe: str = join(directory, ModelProvider.MODEL_PROBE_PATH)
|
||||||
with open(probe, 'w') as stream:
|
with open(probe, "w") as stream:
|
||||||
stream.write('OK')
|
stream.write("OK")
|
||||||
|
|
||||||
def get(self, model_directory: str) -> str:
|
def get(self, model_directory: str) -> str:
|
||||||
"""
|
"""
|
||||||
Ensures required model is available at given location.
|
Ensures required model is available at given location.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
model_directory (str):
|
model_directory (str):
|
||||||
Expected model_directory to be available.
|
Expected model_directory to be available.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
IOError:
|
IOError:
|
||||||
If model can not be retrieved.
|
If model can not be retrieved.
|
||||||
"""
|
"""
|
||||||
# Expend model directory if needed.
|
# Expend model directory if needed.
|
||||||
if not isabs(model_directory):
|
if not isabs(model_directory):
|
||||||
@@ -77,20 +77,19 @@ class ModelProvider(ABC):
|
|||||||
if not exists(model_probe):
|
if not exists(model_probe):
|
||||||
if not exists(model_directory):
|
if not exists(model_directory):
|
||||||
makedirs(model_directory)
|
makedirs(model_directory)
|
||||||
self.download(
|
self.download(model_directory.split(sep)[-1], model_directory)
|
||||||
model_directory.split(sep)[-1],
|
|
||||||
model_directory)
|
|
||||||
self.writeProbe(model_directory)
|
self.writeProbe(model_directory)
|
||||||
return model_directory
|
return model_directory
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def default(_: type) -> 'ModelProvider':
|
def default(_: type) -> "ModelProvider":
|
||||||
"""
|
"""
|
||||||
Builds and returns a default model provider.
|
Builds and returns a default model provider.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
ModelProvider:
|
ModelProvider:
|
||||||
A default model provider instance to use.
|
A default model provider instance to use.
|
||||||
"""
|
"""
|
||||||
from .github import GithubModelProvider
|
from .github import GithubModelProvider
|
||||||
|
|
||||||
return GithubModelProvider.from_environ()
|
return GithubModelProvider.from_environ()
|
||||||
|
|||||||
@@ -17,35 +17,35 @@
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import hashlib
|
import hashlib
|
||||||
import tarfile
|
|
||||||
import os
|
import os
|
||||||
|
import tarfile
|
||||||
from os import environ
|
from os import environ
|
||||||
from tempfile import NamedTemporaryFile
|
from tempfile import NamedTemporaryFile
|
||||||
from typing import Dict
|
from typing import Dict
|
||||||
|
|
||||||
from . import ModelProvider
|
|
||||||
from ...utils.logging import logger
|
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import httpx
|
import httpx
|
||||||
|
|
||||||
|
from ...utils.logging import logger
|
||||||
|
from . import ModelProvider
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
def compute_file_checksum(path):
|
def compute_file_checksum(path):
|
||||||
""" Computes given path file sha256.
|
"""Computes given path file sha256.
|
||||||
|
|
||||||
:param path: Path of the file to compute checksum for.
|
:param path: Path of the file to compute checksum for.
|
||||||
:returns: File checksum.
|
:returns: File checksum.
|
||||||
"""
|
"""
|
||||||
sha256 = hashlib.sha256()
|
sha256 = hashlib.sha256()
|
||||||
with open(path, 'rb') as stream:
|
with open(path, "rb") as stream:
|
||||||
for chunk in iter(lambda: stream.read(4096), b''):
|
for chunk in iter(lambda: stream.read(4096), b""):
|
||||||
sha256.update(chunk)
|
sha256.update(chunk)
|
||||||
return sha256.hexdigest()
|
return sha256.hexdigest()
|
||||||
|
|
||||||
@@ -53,19 +53,15 @@ def compute_file_checksum(path):
|
|||||||
class GithubModelProvider(ModelProvider):
|
class GithubModelProvider(ModelProvider):
|
||||||
""" A ModelProvider implementation backed on Github for remote storage. """
|
""" A ModelProvider implementation backed on Github for remote storage. """
|
||||||
|
|
||||||
DEFAULT_HOST: str = 'https://github.com'
|
DEFAULT_HOST: str = "https://github.com"
|
||||||
DEFAULT_REPOSITORY: str = 'deezer/spleeter'
|
DEFAULT_REPOSITORY: str = "deezer/spleeter"
|
||||||
|
|
||||||
CHECKSUM_INDEX: str = 'checksum.json'
|
CHECKSUM_INDEX: str = "checksum.json"
|
||||||
LATEST_RELEASE: str = 'v1.4.0'
|
LATEST_RELEASE: str = "v1.4.0"
|
||||||
RELEASE_PATH: str = 'releases/download'
|
RELEASE_PATH: str = "releases/download"
|
||||||
|
|
||||||
def __init__(
|
def __init__(self, host: str, repository: str, release: str) -> None:
|
||||||
self,
|
"""Default constructor.
|
||||||
host: str,
|
|
||||||
repository: str,
|
|
||||||
release: str) -> None:
|
|
||||||
""" Default constructor.
|
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
host (str):
|
host (str):
|
||||||
@@ -80,81 +76,81 @@ class GithubModelProvider(ModelProvider):
|
|||||||
self._release: str = release
|
self._release: str = release
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def from_environ(cls: type) -> 'GithubModelProvider':
|
def from_environ(cls: type) -> "GithubModelProvider":
|
||||||
"""
|
"""
|
||||||
Factory method that creates provider from envvars.
|
Factory method that creates provider from envvars.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
GithubModelProvider:
|
GithubModelProvider:
|
||||||
Created instance.
|
Created instance.
|
||||||
"""
|
"""
|
||||||
return cls(
|
return cls(
|
||||||
environ.get('GITHUB_HOST', cls.DEFAULT_HOST),
|
environ.get("GITHUB_HOST", cls.DEFAULT_HOST),
|
||||||
environ.get('GITHUB_REPOSITORY', cls.DEFAULT_REPOSITORY),
|
environ.get("GITHUB_REPOSITORY", cls.DEFAULT_REPOSITORY),
|
||||||
environ.get('GITHUB_RELEASE', cls.LATEST_RELEASE))
|
environ.get("GITHUB_RELEASE", cls.LATEST_RELEASE),
|
||||||
|
)
|
||||||
|
|
||||||
def checksum(self, name: str) -> str:
|
def checksum(self, name: str) -> str:
|
||||||
"""
|
"""
|
||||||
Downloads and returns reference checksum for the given model name.
|
Downloads and returns reference checksum for the given model name.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
name (str):
|
name (str):
|
||||||
Name of the model to get checksum for.
|
Name of the model to get checksum for.
|
||||||
Returns:
|
Returns:
|
||||||
str:
|
str:
|
||||||
Checksum of the required model.
|
Checksum of the required model.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
ValueError:
|
ValueError:
|
||||||
If the given model name is not indexed.
|
If the given model name is not indexed.
|
||||||
"""
|
"""
|
||||||
url: str = '/'.join((
|
url: str = "/".join(
|
||||||
self._host,
|
(
|
||||||
self._repository,
|
self._host,
|
||||||
self.RELEASE_PATH,
|
self._repository,
|
||||||
self._release,
|
self.RELEASE_PATH,
|
||||||
self.CHECKSUM_INDEX))
|
self._release,
|
||||||
|
self.CHECKSUM_INDEX,
|
||||||
|
)
|
||||||
|
)
|
||||||
response: httpx.Response = httpx.get(url)
|
response: httpx.Response = httpx.get(url)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
index: Dict = response.json()
|
index: Dict = response.json()
|
||||||
if name not in index:
|
if name not in index:
|
||||||
raise ValueError(f'No checksum for model {name}')
|
raise ValueError(f"No checksum for model {name}")
|
||||||
return index[name]
|
return index[name]
|
||||||
|
|
||||||
def download(self, name: str, path: str) -> None:
|
def download(self, name: str, path: str) -> None:
|
||||||
"""
|
"""
|
||||||
Download model denoted by the given name to disk.
|
Download model denoted by the given name to disk.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
name (str):
|
name (str):
|
||||||
Name of the model to download.
|
Name of the model to download.
|
||||||
path (str):
|
path (str):
|
||||||
Path of the directory to save model into.
|
Path of the directory to save model into.
|
||||||
"""
|
"""
|
||||||
url: str = '/'.join((
|
url: str = "/".join(
|
||||||
self._host,
|
(self._host, self._repository, self.RELEASE_PATH, self._release, name)
|
||||||
self._repository,
|
)
|
||||||
self.RELEASE_PATH,
|
url = f"{url}.tar.gz"
|
||||||
self._release,
|
logger.info(f"Downloading model archive {url}")
|
||||||
name))
|
|
||||||
url = f'{url}.tar.gz'
|
|
||||||
logger.info(f'Downloading model archive {url}')
|
|
||||||
with httpx.Client(http2=True) as client:
|
with httpx.Client(http2=True) as client:
|
||||||
with client.stream('GET', url) as response:
|
with client.stream("GET", url) as response:
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
archive = NamedTemporaryFile(delete=False)
|
archive = NamedTemporaryFile(delete=False)
|
||||||
try:
|
try:
|
||||||
with archive as stream:
|
with archive as stream:
|
||||||
for chunk in response.iter_raw():
|
for chunk in response.iter_raw():
|
||||||
stream.write(chunk)
|
stream.write(chunk)
|
||||||
logger.info('Validating archive checksum')
|
logger.info("Validating archive checksum")
|
||||||
checksum: str = compute_file_checksum(archive.name)
|
checksum: str = compute_file_checksum(archive.name)
|
||||||
if checksum != self.checksum(name):
|
if checksum != self.checksum(name):
|
||||||
raise IOError(
|
raise IOError("Downloaded file is corrupted, please retry")
|
||||||
'Downloaded file is corrupted, please retry')
|
logger.info(f"Extracting downloaded {name} archive")
|
||||||
logger.info(f'Extracting downloaded {name} archive')
|
|
||||||
with tarfile.open(name=archive.name) as tar:
|
with tarfile.open(name=archive.name) as tar:
|
||||||
tar.extractall(path=path)
|
tar.extractall(path=path)
|
||||||
finally:
|
finally:
|
||||||
os.unlink(archive.name)
|
os.unlink(archive.name)
|
||||||
logger.info(f'{name} model file(s) extracted')
|
logger.info(f"{name} model file(s) extracted")
|
||||||
|
|||||||
@@ -3,126 +3,126 @@
|
|||||||
|
|
||||||
""" This modules provides spleeter command as well as CLI parsing methods. """
|
""" This modules provides spleeter command as well as CLI parsing methods. """
|
||||||
|
|
||||||
from tempfile import gettempdir
|
|
||||||
from os.path import join
|
from os.path import join
|
||||||
|
from tempfile import gettempdir
|
||||||
from .audio import Codec, STFTBackend
|
|
||||||
|
|
||||||
from typer import Argument, Option
|
from typer import Argument, Option
|
||||||
from typer.models import ArgumentInfo, OptionInfo
|
from typer.models import ArgumentInfo, OptionInfo
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
from .audio import Codec, STFTBackend
|
||||||
__author__ = 'Deezer Research'
|
|
||||||
__license__ = 'MIT License'
|
__email__ = "spleeter@deezer.com"
|
||||||
|
__author__ = "Deezer Research"
|
||||||
|
__license__ = "MIT License"
|
||||||
|
|
||||||
AudioInputArgument: ArgumentInfo = Argument(
|
AudioInputArgument: ArgumentInfo = Argument(
|
||||||
...,
|
...,
|
||||||
help='List of input audio file path',
|
help="List of input audio file path",
|
||||||
exists=True,
|
exists=True,
|
||||||
file_okay=True,
|
file_okay=True,
|
||||||
dir_okay=False,
|
dir_okay=False,
|
||||||
readable=True,
|
readable=True,
|
||||||
resolve_path=True)
|
resolve_path=True,
|
||||||
|
)
|
||||||
|
|
||||||
AudioInputOption: OptionInfo = Option(
|
AudioInputOption: OptionInfo = Option(
|
||||||
None,
|
None, "--inputs", "-i", help="(DEPRECATED) placeholder for deprecated input option"
|
||||||
'--inputs',
|
)
|
||||||
'-i',
|
|
||||||
help='(DEPRECATED) placeholder for deprecated input option')
|
|
||||||
|
|
||||||
AudioAdapterOption: OptionInfo = Option(
|
AudioAdapterOption: OptionInfo = Option(
|
||||||
'spleeter.audio.ffmpeg.FFMPEGProcessAudioAdapter',
|
"spleeter.audio.ffmpeg.FFMPEGProcessAudioAdapter",
|
||||||
'--adapter',
|
"--adapter",
|
||||||
'-a',
|
"-a",
|
||||||
help='Name of the audio adapter to use for audio I/O')
|
help="Name of the audio adapter to use for audio I/O",
|
||||||
|
)
|
||||||
|
|
||||||
AudioOutputOption: OptionInfo = Option(
|
AudioOutputOption: OptionInfo = Option(
|
||||||
join(gettempdir(), 'separated_audio'),
|
join(gettempdir(), "separated_audio"),
|
||||||
'--output_path',
|
"--output_path",
|
||||||
'-o',
|
"-o",
|
||||||
help='Path of the output directory to write audio files in')
|
help="Path of the output directory to write audio files in",
|
||||||
|
)
|
||||||
|
|
||||||
AudioOffsetOption: OptionInfo = Option(
|
AudioOffsetOption: OptionInfo = Option(
|
||||||
0.,
|
0.0, "--offset", "-s", help="Set the starting offset to separate audio from"
|
||||||
'--offset',
|
)
|
||||||
'-s',
|
|
||||||
help='Set the starting offset to separate audio from')
|
|
||||||
|
|
||||||
AudioDurationOption: OptionInfo = Option(
|
AudioDurationOption: OptionInfo = Option(
|
||||||
600.,
|
600.0,
|
||||||
'--duration',
|
"--duration",
|
||||||
'-d',
|
"-d",
|
||||||
help=(
|
help=(
|
||||||
'Set a maximum duration for processing audio '
|
"Set a maximum duration for processing audio "
|
||||||
'(only separate offset + duration first seconds of '
|
"(only separate offset + duration first seconds of "
|
||||||
'the input file)'))
|
"the input file)"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
AudioSTFTBackendOption: OptionInfo = Option(
|
AudioSTFTBackendOption: OptionInfo = Option(
|
||||||
STFTBackend.AUTO,
|
STFTBackend.AUTO,
|
||||||
'--stft-backend',
|
"--stft-backend",
|
||||||
'-B',
|
"-B",
|
||||||
case_sensitive=False,
|
case_sensitive=False,
|
||||||
help=(
|
help=(
|
||||||
'Who should be in charge of computing the stfts. Librosa is faster '
|
"Who should be in charge of computing the stfts. Librosa is faster "
|
||||||
'than tensorflow on CPU and uses less memory. "auto" will use '
|
'than tensorflow on CPU and uses less memory. "auto" will use '
|
||||||
'tensorflow when GPU acceleration is available and librosa when not'))
|
"tensorflow when GPU acceleration is available and librosa when not"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
AudioCodecOption: OptionInfo = Option(
|
AudioCodecOption: OptionInfo = Option(
|
||||||
Codec.WAV,
|
Codec.WAV, "--codec", "-c", help="Audio codec to be used for the separated output"
|
||||||
'--codec',
|
)
|
||||||
'-c',
|
|
||||||
help='Audio codec to be used for the separated output')
|
|
||||||
|
|
||||||
AudioBitrateOption: OptionInfo = Option(
|
AudioBitrateOption: OptionInfo = Option(
|
||||||
'128k',
|
"128k", "--bitrate", "-b", help="Audio bitrate to be used for the separated output"
|
||||||
'--bitrate',
|
)
|
||||||
'-b',
|
|
||||||
help='Audio bitrate to be used for the separated output')
|
|
||||||
|
|
||||||
FilenameFormatOption: OptionInfo = Option(
|
FilenameFormatOption: OptionInfo = Option(
|
||||||
'{filename}/{instrument}.{codec}',
|
"{filename}/{instrument}.{codec}",
|
||||||
'--filename_format',
|
"--filename_format",
|
||||||
'-f',
|
"-f",
|
||||||
help=(
|
help=(
|
||||||
'Template string that will be formatted to generated'
|
"Template string that will be formatted to generated"
|
||||||
'output filename. Such template should be Python formattable'
|
"output filename. Such template should be Python formattable"
|
||||||
'string, and could use {filename}, {instrument}, and {codec}'
|
"string, and could use {filename}, {instrument}, and {codec}"
|
||||||
'variables'))
|
"variables"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
ModelParametersOption: OptionInfo = Option(
|
ModelParametersOption: OptionInfo = Option(
|
||||||
'spleeter:2stems',
|
"spleeter:2stems",
|
||||||
'--params_filename',
|
"--params_filename",
|
||||||
'-p',
|
"-p",
|
||||||
help='JSON filename that contains params')
|
help="JSON filename that contains params",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
MWFOption: OptionInfo = Option(
|
MWFOption: OptionInfo = Option(
|
||||||
False,
|
False, "--mwf", help="Whether to use multichannel Wiener filtering for separation"
|
||||||
'--mwf',
|
)
|
||||||
help='Whether to use multichannel Wiener filtering for separation')
|
|
||||||
|
|
||||||
MUSDBDirectoryOption: OptionInfo = Option(
|
MUSDBDirectoryOption: OptionInfo = Option(
|
||||||
...,
|
...,
|
||||||
'--mus_dir',
|
"--mus_dir",
|
||||||
exists=True,
|
exists=True,
|
||||||
dir_okay=True,
|
dir_okay=True,
|
||||||
file_okay=False,
|
file_okay=False,
|
||||||
readable=True,
|
readable=True,
|
||||||
resolve_path=True,
|
resolve_path=True,
|
||||||
help='Path to musDB dataset directory')
|
help="Path to musDB dataset directory",
|
||||||
|
)
|
||||||
|
|
||||||
TrainingDataDirectoryOption: OptionInfo = Option(
|
TrainingDataDirectoryOption: OptionInfo = Option(
|
||||||
...,
|
...,
|
||||||
'--data',
|
"--data",
|
||||||
'-d',
|
"-d",
|
||||||
exists=True,
|
exists=True,
|
||||||
dir_okay=True,
|
dir_okay=True,
|
||||||
file_okay=False,
|
file_okay=False,
|
||||||
readable=True,
|
readable=True,
|
||||||
resolve_path=True,
|
resolve_path=True,
|
||||||
help='Path of the folder containing audio data for training')
|
help="Path of the folder containing audio data for training",
|
||||||
|
)
|
||||||
|
|
||||||
VerboseOption: OptionInfo = Option(
|
VerboseOption: OptionInfo = Option(False, "--verbose", help="Enable verbose logs")
|
||||||
False,
|
|
||||||
'--verbose',
|
|
||||||
help='Enable verbose logs')
|
|
||||||
|
|||||||
@@ -3,6 +3,6 @@
|
|||||||
|
|
||||||
""" Packages that provides static resources file for the library. """
|
""" Packages that provides static resources file for the library. """
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|||||||
@@ -16,41 +16,40 @@
|
|||||||
|
|
||||||
import atexit
|
import atexit
|
||||||
import os
|
import os
|
||||||
|
|
||||||
from multiprocessing import Pool
|
from multiprocessing import Pool
|
||||||
from os.path import basename, join, splitext, dirname
|
from os.path import basename, dirname, join, splitext
|
||||||
from spleeter.model.provider import ModelProvider
|
|
||||||
from typing import Dict, Generator, Optional
|
from typing import Dict, Generator, Optional
|
||||||
|
|
||||||
from . import SpleeterError
|
|
||||||
from .audio import Codec, STFTBackend
|
|
||||||
from .audio.adapter import AudioAdapter
|
|
||||||
from .audio.convertor import to_stereo
|
|
||||||
from .model import model_fn
|
|
||||||
from .model import EstimatorSpecBuilder, InputProviderFactory
|
|
||||||
from .model.provider import ModelProvider
|
|
||||||
from .types import AudioDescriptor
|
|
||||||
from .utils.configuration import load_configuration
|
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
from librosa.core import istft, stft
|
||||||
from librosa.core import stft, istft
|
|
||||||
from scipy.signal.windows import hann
|
from scipy.signal.windows import hann
|
||||||
|
|
||||||
|
from spleeter.model.provider import ModelProvider
|
||||||
|
|
||||||
|
from . import SpleeterError
|
||||||
|
from .audio import Codec, STFTBackend
|
||||||
|
from .audio.adapter import AudioAdapter
|
||||||
|
from .audio.convertor import to_stereo
|
||||||
|
from .model import EstimatorSpecBuilder, InputProviderFactory, model_fn
|
||||||
|
from .model.provider import ModelProvider
|
||||||
|
from .types import AudioDescriptor
|
||||||
|
from .utils.configuration import load_configuration
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
class DataGenerator(object):
|
class DataGenerator(object):
|
||||||
"""
|
"""
|
||||||
Generator object that store a sample and generate it once while called.
|
Generator object that store a sample and generate it once while called.
|
||||||
Used to feed a tensorflow estimator without knowing the whole data at
|
Used to feed a tensorflow estimator without knowing the whole data at
|
||||||
build time.
|
build time.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
@@ -71,28 +70,26 @@ class DataGenerator(object):
|
|||||||
|
|
||||||
def create_estimator(params, MWF):
|
def create_estimator(params, MWF):
|
||||||
"""
|
"""
|
||||||
Initialize tensorflow estimator that will perform separation
|
Initialize tensorflow estimator that will perform separation
|
||||||
|
|
||||||
Params:
|
Params:
|
||||||
- params: a dictionary of parameters for building the model
|
- params: a dictionary of parameters for building the model
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
a tensorflow estimator
|
a tensorflow estimator
|
||||||
"""
|
"""
|
||||||
# Load model.
|
# Load model.
|
||||||
provider: ModelProvider = ModelProvider.default()
|
provider: ModelProvider = ModelProvider.default()
|
||||||
params['model_dir'] = provider.get(params['model_dir'])
|
params["model_dir"] = provider.get(params["model_dir"])
|
||||||
params['MWF'] = MWF
|
params["MWF"] = MWF
|
||||||
# Setup config
|
# Setup config
|
||||||
session_config = tf.compat.v1.ConfigProto()
|
session_config = tf.compat.v1.ConfigProto()
|
||||||
session_config.gpu_options.per_process_gpu_memory_fraction = 0.7
|
session_config.gpu_options.per_process_gpu_memory_fraction = 0.7
|
||||||
config = tf.estimator.RunConfig(session_config=session_config)
|
config = tf.estimator.RunConfig(session_config=session_config)
|
||||||
# Setup estimator
|
# Setup estimator
|
||||||
estimator = tf.estimator.Estimator(
|
estimator = tf.estimator.Estimator(
|
||||||
model_fn=model_fn,
|
model_fn=model_fn, model_dir=params["model_dir"], params=params, config=config
|
||||||
model_dir=params['model_dir'],
|
)
|
||||||
params=params,
|
|
||||||
config=config)
|
|
||||||
return estimator
|
return estimator
|
||||||
|
|
||||||
|
|
||||||
@@ -100,22 +97,23 @@ class Separator(object):
|
|||||||
""" A wrapper class for performing separation. """
|
""" A wrapper class for performing separation. """
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
params_descriptor: str,
|
params_descriptor: str,
|
||||||
MWF: bool = False,
|
MWF: bool = False,
|
||||||
stft_backend: STFTBackend = STFTBackend.AUTO,
|
stft_backend: STFTBackend = STFTBackend.AUTO,
|
||||||
multiprocess: bool = True) -> None:
|
multiprocess: bool = True,
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Default constructor.
|
Default constructor.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
params_descriptor (str):
|
params_descriptor (str):
|
||||||
Descriptor for TF params to be used.
|
Descriptor for TF params to be used.
|
||||||
MWF (bool):
|
MWF (bool):
|
||||||
(Optional) `True` if MWF should be used, `False` otherwise.
|
(Optional) `True` if MWF should be used, `False` otherwise.
|
||||||
"""
|
"""
|
||||||
self._params = load_configuration(params_descriptor)
|
self._params = load_configuration(params_descriptor)
|
||||||
self._sample_rate = self._params['sample_rate']
|
self._sample_rate = self._params["sample_rate"]
|
||||||
self._MWF = MWF
|
self._MWF = MWF
|
||||||
self._tf_graph = tf.Graph()
|
self._tf_graph = tf.Graph()
|
||||||
self._prediction_generator = None
|
self._prediction_generator = None
|
||||||
@@ -129,7 +127,7 @@ class Separator(object):
|
|||||||
else:
|
else:
|
||||||
self._pool = None
|
self._pool = None
|
||||||
self._tasks = []
|
self._tasks = []
|
||||||
self._params['stft_backend'] = STFTBackend.resolve(stft_backend)
|
self._params["stft_backend"] = STFTBackend.resolve(stft_backend)
|
||||||
self._data_generator = DataGenerator()
|
self._data_generator = DataGenerator()
|
||||||
|
|
||||||
def __del__(self) -> None:
|
def __del__(self) -> None:
|
||||||
@@ -138,12 +136,12 @@ class Separator(object):
|
|||||||
|
|
||||||
def _get_prediction_generator(self) -> Generator:
|
def _get_prediction_generator(self) -> Generator:
|
||||||
"""
|
"""
|
||||||
Lazy loading access method for internal prediction generator
|
Lazy loading access method for internal prediction generator
|
||||||
returned by the predict method of a tensorflow estimator.
|
returned by the predict method of a tensorflow estimator.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Generator:
|
Generator:
|
||||||
Generator of prediction.
|
Generator of prediction.
|
||||||
"""
|
"""
|
||||||
if self._prediction_generator is None:
|
if self._prediction_generator is None:
|
||||||
estimator = create_estimator(self._params, self._MWF)
|
estimator = create_estimator(self._params, self._MWF)
|
||||||
@@ -151,25 +149,22 @@ class Separator(object):
|
|||||||
def get_dataset():
|
def get_dataset():
|
||||||
return tf.data.Dataset.from_generator(
|
return tf.data.Dataset.from_generator(
|
||||||
self._data_generator,
|
self._data_generator,
|
||||||
output_types={
|
output_types={"waveform": tf.float32, "audio_id": tf.string},
|
||||||
'waveform': tf.float32,
|
output_shapes={"waveform": (None, 2), "audio_id": ()},
|
||||||
'audio_id': tf.string},
|
)
|
||||||
output_shapes={
|
|
||||||
'waveform': (None, 2),
|
|
||||||
'audio_id': ()})
|
|
||||||
|
|
||||||
self._prediction_generator = estimator.predict(
|
self._prediction_generator = estimator.predict(
|
||||||
get_dataset,
|
get_dataset, yield_single_examples=False
|
||||||
yield_single_examples=False)
|
)
|
||||||
return self._prediction_generator
|
return self._prediction_generator
|
||||||
|
|
||||||
def join(self, timeout: int = 200) -> None:
|
def join(self, timeout: int = 200) -> None:
|
||||||
"""
|
"""
|
||||||
Wait for all pending tasks to be finished.
|
Wait for all pending tasks to be finished.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
timeout (int):
|
timeout (int):
|
||||||
(Optional) task waiting timeout.
|
(Optional) task waiting timeout.
|
||||||
"""
|
"""
|
||||||
while len(self._tasks) > 0:
|
while len(self._tasks) > 0:
|
||||||
task = self._tasks.pop()
|
task = self._tasks.pop()
|
||||||
@@ -177,53 +172,51 @@ class Separator(object):
|
|||||||
task.wait(timeout=timeout)
|
task.wait(timeout=timeout)
|
||||||
|
|
||||||
def _stft(
|
def _stft(
|
||||||
self,
|
self, data: np.ndarray, inverse: bool = False, length: Optional[int] = None
|
||||||
data: np.ndarray,
|
) -> np.ndarray:
|
||||||
inverse: bool = False,
|
|
||||||
length: Optional[int] = None) -> np.ndarray:
|
|
||||||
"""
|
"""
|
||||||
Single entrypoint for both stft and istft. This computes stft and
|
Single entrypoint for both stft and istft. This computes stft and
|
||||||
istft with librosa on stereo data. The two channels are processed
|
istft with librosa on stereo data. The two channels are processed
|
||||||
separately and are concatenated together in the result. The
|
separately and are concatenated together in the result. The
|
||||||
expected input formats are: (n_samples, 2) for stft and (T, F, 2)
|
expected input formats are: (n_samples, 2) for stft and (T, F, 2)
|
||||||
for istft.
|
for istft.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
data (numpy.array):
|
data (numpy.array):
|
||||||
Array with either the waveform or the complex spectrogram
|
Array with either the waveform or the complex spectrogram
|
||||||
depending on the parameter inverse
|
depending on the parameter inverse
|
||||||
inverse (bool):
|
inverse (bool):
|
||||||
(Optional) Should a stft or an istft be computed.
|
(Optional) Should a stft or an istft be computed.
|
||||||
length (Optional[int]):
|
length (Optional[int]):
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
numpy.ndarray:
|
numpy.ndarray:
|
||||||
Stereo data as numpy array for the transform. The channels
|
Stereo data as numpy array for the transform. The channels
|
||||||
are stored in the last dimension.
|
are stored in the last dimension.
|
||||||
"""
|
"""
|
||||||
assert not (inverse and length is None)
|
assert not (inverse and length is None)
|
||||||
data = np.asfortranarray(data)
|
data = np.asfortranarray(data)
|
||||||
N = self._params['frame_length']
|
N = self._params["frame_length"]
|
||||||
H = self._params['frame_step']
|
H = self._params["frame_step"]
|
||||||
win = hann(N, sym=False)
|
win = hann(N, sym=False)
|
||||||
fstft = istft if inverse else stft
|
fstft = istft if inverse else stft
|
||||||
win_len_arg = {
|
win_len_arg = {"win_length": None, "length": None} if inverse else {"n_fft": N}
|
||||||
'win_length': None,
|
|
||||||
'length': None} if inverse else {'n_fft': N}
|
|
||||||
n_channels = data.shape[-1]
|
n_channels = data.shape[-1]
|
||||||
out = []
|
out = []
|
||||||
for c in range(n_channels):
|
for c in range(n_channels):
|
||||||
d = np.concatenate(
|
d = (
|
||||||
(np.zeros((N, )), data[:, c], np.zeros((N, )))
|
np.concatenate((np.zeros((N,)), data[:, c], np.zeros((N,))))
|
||||||
) if not inverse else data[:, :, c].T
|
if not inverse
|
||||||
|
else data[:, :, c].T
|
||||||
|
)
|
||||||
s = fstft(d, hop_length=H, window=win, center=False, **win_len_arg)
|
s = fstft(d, hop_length=H, window=win, center=False, **win_len_arg)
|
||||||
if inverse:
|
if inverse:
|
||||||
s = s[N:N+length]
|
s = s[N : N + length]
|
||||||
s = np.expand_dims(s.T, 2-inverse)
|
s = np.expand_dims(s.T, 2 - inverse)
|
||||||
out.append(s)
|
out.append(s)
|
||||||
if len(out) == 1:
|
if len(out) == 1:
|
||||||
return out[0]
|
return out[0]
|
||||||
return np.concatenate(out, axis=2-inverse)
|
return np.concatenate(out, axis=2 - inverse)
|
||||||
|
|
||||||
def _get_input_provider(self):
|
def _get_input_provider(self):
|
||||||
if self._input_provider is None:
|
if self._input_provider is None:
|
||||||
@@ -238,32 +231,29 @@ class Separator(object):
|
|||||||
|
|
||||||
def _get_builder(self):
|
def _get_builder(self):
|
||||||
if self._builder is None:
|
if self._builder is None:
|
||||||
self._builder = EstimatorSpecBuilder(
|
self._builder = EstimatorSpecBuilder(self._get_features(), self._params)
|
||||||
self._get_features(),
|
|
||||||
self._params)
|
|
||||||
return self._builder
|
return self._builder
|
||||||
|
|
||||||
def _get_session(self):
|
def _get_session(self):
|
||||||
if self._session is None:
|
if self._session is None:
|
||||||
saver = tf.compat.v1.train.Saver()
|
saver = tf.compat.v1.train.Saver()
|
||||||
provider = ModelProvider.default()
|
provider = ModelProvider.default()
|
||||||
model_directory: str = provider.get(self._params['model_dir'])
|
model_directory: str = provider.get(self._params["model_dir"])
|
||||||
latest_checkpoint = tf.train.latest_checkpoint(model_directory)
|
latest_checkpoint = tf.train.latest_checkpoint(model_directory)
|
||||||
self._session = tf.compat.v1.Session()
|
self._session = tf.compat.v1.Session()
|
||||||
saver.restore(self._session, latest_checkpoint)
|
saver.restore(self._session, latest_checkpoint)
|
||||||
return self._session
|
return self._session
|
||||||
|
|
||||||
def _separate_librosa(
|
def _separate_librosa(
|
||||||
self,
|
self, waveform: np.ndarray, audio_descriptor: AudioDescriptor
|
||||||
waveform: np.ndarray,
|
) -> Dict:
|
||||||
audio_descriptor: AudioDescriptor) -> Dict:
|
|
||||||
"""
|
"""
|
||||||
Performs separation with librosa backend for STFT.
|
Performs separation with librosa backend for STFT.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
waveform (numpy.ndarray):
|
waveform (numpy.ndarray):
|
||||||
Waveform to be separated (as a numpy array)
|
Waveform to be separated (as a numpy array)
|
||||||
audio_descriptor (AudioDescriptor):
|
audio_descriptor (AudioDescriptor):
|
||||||
"""
|
"""
|
||||||
with self._tf_graph.as_default():
|
with self._tf_graph.as_default():
|
||||||
out = {}
|
out = {}
|
||||||
@@ -280,108 +270,106 @@ class Separator(object):
|
|||||||
outputs = sess.run(
|
outputs = sess.run(
|
||||||
outputs,
|
outputs,
|
||||||
feed_dict=self._get_input_provider().get_feed_dict(
|
feed_dict=self._get_input_provider().get_feed_dict(
|
||||||
features,
|
features, stft, audio_descriptor
|
||||||
stft,
|
),
|
||||||
audio_descriptor))
|
)
|
||||||
for inst in self._get_builder().instruments:
|
for inst in self._get_builder().instruments:
|
||||||
out[inst] = self._stft(
|
out[inst] = self._stft(
|
||||||
outputs[inst],
|
outputs[inst], inverse=True, length=waveform.shape[0]
|
||||||
inverse=True,
|
)
|
||||||
length=waveform.shape[0])
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def _separate_tensorflow(
|
def _separate_tensorflow(
|
||||||
self,
|
self, waveform: np.ndarray, audio_descriptor: AudioDescriptor
|
||||||
waveform: np.ndarray,
|
) -> Dict:
|
||||||
audio_descriptor: AudioDescriptor) -> Dict:
|
|
||||||
"""
|
"""
|
||||||
Performs source separation over the given waveform with tensorflow
|
Performs source separation over the given waveform with tensorflow
|
||||||
backend.
|
backend.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
waveform (numpy.ndarray):
|
waveform (numpy.ndarray):
|
||||||
Waveform to be separated (as a numpy array)
|
Waveform to be separated (as a numpy array)
|
||||||
audio_descriptor (AudioDescriptor):
|
audio_descriptor (AudioDescriptor):
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Separated waveforms.
|
Separated waveforms.
|
||||||
"""
|
"""
|
||||||
if not waveform.shape[-1] == 2:
|
if not waveform.shape[-1] == 2:
|
||||||
waveform = to_stereo(waveform)
|
waveform = to_stereo(waveform)
|
||||||
prediction_generator = self._get_prediction_generator()
|
prediction_generator = self._get_prediction_generator()
|
||||||
# NOTE: update data in generator before performing separation.
|
# NOTE: update data in generator before performing separation.
|
||||||
self._data_generator.update_data({
|
self._data_generator.update_data(
|
||||||
'waveform': waveform,
|
{"waveform": waveform, "audio_id": np.array(audio_descriptor)}
|
||||||
'audio_id': np.array(audio_descriptor)})
|
)
|
||||||
# NOTE: perform separation.
|
# NOTE: perform separation.
|
||||||
prediction = next(prediction_generator)
|
prediction = next(prediction_generator)
|
||||||
prediction.pop('audio_id')
|
prediction.pop("audio_id")
|
||||||
return prediction
|
return prediction
|
||||||
|
|
||||||
def separate(
|
def separate(
|
||||||
self,
|
self, waveform: np.ndarray, audio_descriptor: Optional[str] = None
|
||||||
waveform: np.ndarray,
|
) -> None:
|
||||||
audio_descriptor: Optional[str] = None) -> None:
|
|
||||||
"""
|
"""
|
||||||
Performs separation on a waveform.
|
Performs separation on a waveform.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
waveform (numpy.ndarray):
|
waveform (numpy.ndarray):
|
||||||
Waveform to be separated (as a numpy array)
|
Waveform to be separated (as a numpy array)
|
||||||
audio_descriptor (str):
|
audio_descriptor (str):
|
||||||
(Optional) string describing the waveform (e.g. filename).
|
(Optional) string describing the waveform (e.g. filename).
|
||||||
"""
|
"""
|
||||||
backend: str = self._params['stft_backend']
|
backend: str = self._params["stft_backend"]
|
||||||
if backend == STFTBackend.TENSORFLOW:
|
if backend == STFTBackend.TENSORFLOW:
|
||||||
return self._separate_tensorflow(waveform, audio_descriptor)
|
return self._separate_tensorflow(waveform, audio_descriptor)
|
||||||
elif backend == STFTBackend.LIBROSA:
|
elif backend == STFTBackend.LIBROSA:
|
||||||
return self._separate_librosa(waveform, audio_descriptor)
|
return self._separate_librosa(waveform, audio_descriptor)
|
||||||
raise ValueError(f'Unsupported STFT backend {backend}')
|
raise ValueError(f"Unsupported STFT backend {backend}")
|
||||||
|
|
||||||
def separate_to_file(
|
def separate_to_file(
|
||||||
self,
|
self,
|
||||||
audio_descriptor: AudioDescriptor,
|
audio_descriptor: AudioDescriptor,
|
||||||
destination: str,
|
destination: str,
|
||||||
audio_adapter: Optional[AudioAdapter] = None,
|
audio_adapter: Optional[AudioAdapter] = None,
|
||||||
offset: int = 0,
|
offset: int = 0,
|
||||||
duration: float = 600.,
|
duration: float = 600.0,
|
||||||
codec: Codec = Codec.WAV,
|
codec: Codec = Codec.WAV,
|
||||||
bitrate: str = '128k',
|
bitrate: str = "128k",
|
||||||
filename_format: str = '{filename}/{instrument}.{codec}',
|
filename_format: str = "{filename}/{instrument}.{codec}",
|
||||||
synchronous: bool = True) -> None:
|
synchronous: bool = True,
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Performs source separation and export result to file using
|
Performs source separation and export result to file using
|
||||||
given audio adapter.
|
given audio adapter.
|
||||||
|
|
||||||
Filename format should be a Python formattable string that could
|
Filename format should be a Python formattable string that could
|
||||||
use following parameters :
|
use following parameters :
|
||||||
|
|
||||||
- {instrument}
|
- {instrument}
|
||||||
- {filename}
|
- {filename}
|
||||||
- {foldername}
|
- {foldername}
|
||||||
- {codec}.
|
- {codec}.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
audio_descriptor (AudioDescriptor):
|
audio_descriptor (AudioDescriptor):
|
||||||
Describe song to separate, used by audio adapter to
|
Describe song to separate, used by audio adapter to
|
||||||
retrieve and load audio data, in case of file based
|
retrieve and load audio data, in case of file based
|
||||||
audio adapter, such descriptor would be a file path.
|
audio adapter, such descriptor would be a file path.
|
||||||
destination (str):
|
destination (str):
|
||||||
Target directory to write output to.
|
Target directory to write output to.
|
||||||
audio_adapter (Optional[AudioAdapter]):
|
audio_adapter (Optional[AudioAdapter]):
|
||||||
(Optional) Audio adapter to use for I/O.
|
(Optional) Audio adapter to use for I/O.
|
||||||
offset (int):
|
offset (int):
|
||||||
(Optional) Offset of loaded song.
|
(Optional) Offset of loaded song.
|
||||||
duration (float):
|
duration (float):
|
||||||
(Optional) Duration of loaded song (default: 600s).
|
(Optional) Duration of loaded song (default: 600s).
|
||||||
codec (Codec):
|
codec (Codec):
|
||||||
(Optional) Export codec.
|
(Optional) Export codec.
|
||||||
bitrate (str):
|
bitrate (str):
|
||||||
(Optional) Export bitrate.
|
(Optional) Export bitrate.
|
||||||
filename_format (str):
|
filename_format (str):
|
||||||
(Optional) Filename format.
|
(Optional) Filename format.
|
||||||
synchronous (bool):
|
synchronous (bool):
|
||||||
(Optional) True is should by synchronous.
|
(Optional) True is should by synchronous.
|
||||||
"""
|
"""
|
||||||
if audio_adapter is None:
|
if audio_adapter is None:
|
||||||
audio_adapter = AudioAdapter.default()
|
audio_adapter = AudioAdapter.default()
|
||||||
@@ -389,7 +377,8 @@ class Separator(object):
|
|||||||
audio_descriptor,
|
audio_descriptor,
|
||||||
offset=offset,
|
offset=offset,
|
||||||
duration=duration,
|
duration=duration,
|
||||||
sample_rate=self._sample_rate)
|
sample_rate=self._sample_rate,
|
||||||
|
)
|
||||||
sources = self.separate(waveform, audio_descriptor)
|
sources = self.separate(waveform, audio_descriptor)
|
||||||
self.save_to_file(
|
self.save_to_file(
|
||||||
sources,
|
sources,
|
||||||
@@ -399,43 +388,45 @@ class Separator(object):
|
|||||||
codec,
|
codec,
|
||||||
audio_adapter,
|
audio_adapter,
|
||||||
bitrate,
|
bitrate,
|
||||||
synchronous)
|
synchronous,
|
||||||
|
)
|
||||||
|
|
||||||
def save_to_file(
|
def save_to_file(
|
||||||
self,
|
self,
|
||||||
sources: Dict,
|
sources: Dict,
|
||||||
audio_descriptor: AudioDescriptor,
|
audio_descriptor: AudioDescriptor,
|
||||||
destination: str,
|
destination: str,
|
||||||
filename_format: str = '{filename}/{instrument}.{codec}',
|
filename_format: str = "{filename}/{instrument}.{codec}",
|
||||||
codec: Codec = Codec.WAV,
|
codec: Codec = Codec.WAV,
|
||||||
audio_adapter: Optional[AudioAdapter] = None,
|
audio_adapter: Optional[AudioAdapter] = None,
|
||||||
bitrate: str = '128k',
|
bitrate: str = "128k",
|
||||||
synchronous: bool = True) -> None:
|
synchronous: bool = True,
|
||||||
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Export dictionary of sources to files.
|
Export dictionary of sources to files.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
sources (Dict):
|
sources (Dict):
|
||||||
Dictionary of sources to be exported. The keys are the name
|
Dictionary of sources to be exported. The keys are the name
|
||||||
of the instruments, and the values are `N x 2` numpy arrays
|
of the instruments, and the values are `N x 2` numpy arrays
|
||||||
containing the corresponding intrument waveform, as
|
containing the corresponding intrument waveform, as
|
||||||
returned by the separate method
|
returned by the separate method
|
||||||
audio_descriptor (AudioDescriptor):
|
audio_descriptor (AudioDescriptor):
|
||||||
Describe song to separate, used by audio adapter to
|
Describe song to separate, used by audio adapter to
|
||||||
retrieve and load audio data, in case of file based audio
|
retrieve and load audio data, in case of file based audio
|
||||||
adapter, such descriptor would be a file path.
|
adapter, such descriptor would be a file path.
|
||||||
destination (str):
|
destination (str):
|
||||||
Target directory to write output to.
|
Target directory to write output to.
|
||||||
filename_format (str):
|
filename_format (str):
|
||||||
(Optional) Filename format.
|
(Optional) Filename format.
|
||||||
codec (Codec):
|
codec (Codec):
|
||||||
(Optional) Export codec.
|
(Optional) Export codec.
|
||||||
audio_adapter (Optional[AudioAdapter]):
|
audio_adapter (Optional[AudioAdapter]):
|
||||||
(Optional) Audio adapter to use for I/O.
|
(Optional) Audio adapter to use for I/O.
|
||||||
bitrate (str):
|
bitrate (str):
|
||||||
(Optional) Export bitrate.
|
(Optional) Export bitrate.
|
||||||
synchronous (bool):
|
synchronous (bool):
|
||||||
(Optional) True is should by synchronous.
|
(Optional) True is should by synchronous.
|
||||||
"""
|
"""
|
||||||
if audio_adapter is None:
|
if audio_adapter is None:
|
||||||
audio_adapter = AudioAdapter.default()
|
audio_adapter = AudioAdapter.default()
|
||||||
@@ -443,34 +434,32 @@ class Separator(object):
|
|||||||
filename = splitext(basename(audio_descriptor))[0]
|
filename = splitext(basename(audio_descriptor))[0]
|
||||||
generated = []
|
generated = []
|
||||||
for instrument, data in sources.items():
|
for instrument, data in sources.items():
|
||||||
path = join(destination, filename_format.format(
|
path = join(
|
||||||
filename=filename,
|
destination,
|
||||||
instrument=instrument,
|
filename_format.format(
|
||||||
foldername=foldername,
|
filename=filename,
|
||||||
codec=codec,
|
instrument=instrument,
|
||||||
))
|
foldername=foldername,
|
||||||
|
codec=codec,
|
||||||
|
),
|
||||||
|
)
|
||||||
directory = os.path.dirname(path)
|
directory = os.path.dirname(path)
|
||||||
if not os.path.exists(directory):
|
if not os.path.exists(directory):
|
||||||
os.makedirs(directory)
|
os.makedirs(directory)
|
||||||
if path in generated:
|
if path in generated:
|
||||||
raise SpleeterError((
|
raise SpleeterError(
|
||||||
f'Separated source path conflict : {path},'
|
(
|
||||||
'please check your filename format'))
|
f"Separated source path conflict : {path},"
|
||||||
|
"please check your filename format"
|
||||||
|
)
|
||||||
|
)
|
||||||
generated.append(path)
|
generated.append(path)
|
||||||
if self._pool:
|
if self._pool:
|
||||||
task = self._pool.apply_async(audio_adapter.save, (
|
task = self._pool.apply_async(
|
||||||
path,
|
audio_adapter.save, (path, data, self._sample_rate, codec, bitrate)
|
||||||
data,
|
)
|
||||||
self._sample_rate,
|
|
||||||
codec,
|
|
||||||
bitrate))
|
|
||||||
self._tasks.append(task)
|
self._tasks.append(task)
|
||||||
else:
|
else:
|
||||||
audio_adapter.save(
|
audio_adapter.save(path, data, self._sample_rate, codec, bitrate)
|
||||||
path,
|
|
||||||
data,
|
|
||||||
self._sample_rate,
|
|
||||||
codec,
|
|
||||||
bitrate)
|
|
||||||
if synchronous and self._pool:
|
if synchronous and self._pool:
|
||||||
self.join()
|
self.join()
|
||||||
|
|||||||
@@ -8,6 +8,7 @@ from typing import Any, Tuple
|
|||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
AudioDescriptor: type = Any
|
AudioDescriptor: type = Any
|
||||||
|
|||||||
@@ -3,6 +3,6 @@
|
|||||||
|
|
||||||
""" This package provides utility function and classes. """
|
""" This package provides utility function and classes. """
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|||||||
@@ -3,51 +3,49 @@
|
|||||||
|
|
||||||
""" Module that provides configuration loading function. """
|
""" Module that provides configuration loading function. """
|
||||||
|
|
||||||
import json
|
|
||||||
import importlib.resources as loader
|
import importlib.resources as loader
|
||||||
|
import json
|
||||||
from os.path import exists
|
from os.path import exists
|
||||||
from typing import Dict
|
from typing import Dict
|
||||||
|
|
||||||
from .. import resources, SpleeterError
|
from .. import SpleeterError, resources
|
||||||
|
|
||||||
|
__email__ = "spleeter@deezer.com"
|
||||||
|
__author__ = "Deezer Research"
|
||||||
|
__license__ = "MIT License"
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
_EMBEDDED_CONFIGURATION_PREFIX: str = "spleeter:"
|
||||||
__author__ = 'Deezer Research'
|
|
||||||
__license__ = 'MIT License'
|
|
||||||
|
|
||||||
_EMBEDDED_CONFIGURATION_PREFIX: str = 'spleeter:'
|
|
||||||
|
|
||||||
|
|
||||||
def load_configuration(descriptor: str) -> Dict:
|
def load_configuration(descriptor: str) -> Dict:
|
||||||
"""
|
"""
|
||||||
Load configuration from the given descriptor. Could be either a
|
Load configuration from the given descriptor. Could be either a
|
||||||
`spleeter:` prefixed embedded configuration name or a file system path
|
`spleeter:` prefixed embedded configuration name or a file system path
|
||||||
to read configuration from.
|
to read configuration from.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
descriptor (str):
|
descriptor (str):
|
||||||
Configuration descriptor to use for lookup.
|
Configuration descriptor to use for lookup.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Dict:
|
Dict:
|
||||||
Loaded description as dict.
|
Loaded description as dict.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
ValueError:
|
ValueError:
|
||||||
If required embedded configuration does not exists.
|
If required embedded configuration does not exists.
|
||||||
SpleeterError:
|
SpleeterError:
|
||||||
If required configuration file does not exists.
|
If required configuration file does not exists.
|
||||||
"""
|
"""
|
||||||
# Embedded configuration reading.
|
# Embedded configuration reading.
|
||||||
if descriptor.startswith(_EMBEDDED_CONFIGURATION_PREFIX):
|
if descriptor.startswith(_EMBEDDED_CONFIGURATION_PREFIX):
|
||||||
name = descriptor[len(_EMBEDDED_CONFIGURATION_PREFIX):]
|
name = descriptor[len(_EMBEDDED_CONFIGURATION_PREFIX) :]
|
||||||
if not loader.is_resource(resources, f'{name}.json'):
|
if not loader.is_resource(resources, f"{name}.json"):
|
||||||
raise SpleeterError(f'No embedded configuration {name} found')
|
raise SpleeterError(f"No embedded configuration {name} found")
|
||||||
with loader.open_text(resources, f'{name}.json') as stream:
|
with loader.open_text(resources, f"{name}.json") as stream:
|
||||||
return json.load(stream)
|
return json.load(stream)
|
||||||
# Standard file reading.
|
# Standard file reading.
|
||||||
if not exists(descriptor):
|
if not exists(descriptor):
|
||||||
raise SpleeterError(f'Configuration file {descriptor} not found')
|
raise SpleeterError(f"Configuration file {descriptor} not found")
|
||||||
with open(descriptor, 'r') as stream:
|
with open(descriptor, "r") as stream:
|
||||||
return json.load(stream)
|
return json.load(stream)
|
||||||
|
|||||||
@@ -5,19 +5,19 @@
|
|||||||
|
|
||||||
import logging
|
import logging
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
from os import environ
|
from os import environ
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
from typer import echo
|
from typer import echo
|
||||||
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||||
|
|
||||||
|
|
||||||
class TyperLoggerHandler(logging.Handler):
|
class TyperLoggerHandler(logging.Handler):
|
||||||
@@ -27,29 +27,30 @@ class TyperLoggerHandler(logging.Handler):
|
|||||||
echo(self.format(record))
|
echo(self.format(record))
|
||||||
|
|
||||||
|
|
||||||
formatter = logging.Formatter('%(levelname)s:%(name)s:%(message)s')
|
formatter = logging.Formatter("%(levelname)s:%(name)s:%(message)s")
|
||||||
handler = TyperLoggerHandler()
|
handler = TyperLoggerHandler()
|
||||||
handler.setFormatter(formatter)
|
handler.setFormatter(formatter)
|
||||||
logger: logging.Logger = logging.getLogger('spleeter')
|
logger: logging.Logger = logging.getLogger("spleeter")
|
||||||
logger.addHandler(handler)
|
logger.addHandler(handler)
|
||||||
logger.setLevel(logging.INFO)
|
logger.setLevel(logging.INFO)
|
||||||
|
|
||||||
|
|
||||||
def configure_logger(verbose: bool) -> None:
|
def configure_logger(verbose: bool) -> None:
|
||||||
"""
|
"""
|
||||||
Configure application logger.
|
Configure application logger.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
verbose (bool):
|
verbose (bool):
|
||||||
`True` to use verbose logger, `False` otherwise.
|
`True` to use verbose logger, `False` otherwise.
|
||||||
"""
|
"""
|
||||||
from tensorflow import get_logger
|
from tensorflow import get_logger
|
||||||
from tensorflow.compat.v1 import logging as tf_logging
|
from tensorflow.compat.v1 import logging as tf_logging
|
||||||
|
|
||||||
tf_logger = get_logger()
|
tf_logger = get_logger()
|
||||||
tf_logger.handlers = [handler]
|
tf_logger.handlers = [handler]
|
||||||
if verbose:
|
if verbose:
|
||||||
tf_logging.set_verbosity(tf_logging.INFO)
|
tf_logging.set_verbosity(tf_logging.INFO)
|
||||||
logger.setLevel(logging.DEBUG)
|
logger.setLevel(logging.DEBUG)
|
||||||
else:
|
else:
|
||||||
warnings.filterwarnings('ignore')
|
warnings.filterwarnings("ignore")
|
||||||
tf_logging.set_verbosity(tf_logging.ERROR)
|
tf_logging.set_verbosity(tf_logging.ERROR)
|
||||||
|
|||||||
@@ -5,50 +5,52 @@
|
|||||||
|
|
||||||
from typing import Any, Callable, Dict
|
from typing import Any, Callable, Dict
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
# pyright: reportMissingImports=false
|
# pyright: reportMissingImports=false
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import pandas as pd
|
|
||||||
# pylint: enable=import-error
|
# pylint: enable=import-error
|
||||||
|
|
||||||
__email__ = 'spleeter@deezer.com'
|
__email__ = "spleeter@deezer.com"
|
||||||
__author__ = 'Deezer Research'
|
__author__ = "Deezer Research"
|
||||||
__license__ = 'MIT License'
|
__license__ = "MIT License"
|
||||||
|
|
||||||
|
|
||||||
def sync_apply(
|
def sync_apply(
|
||||||
tensor_dict: tf.Tensor,
|
tensor_dict: tf.Tensor, func: Callable, concat_axis: int = 1
|
||||||
func: Callable,
|
) -> Dict[str, tf.Tensor]:
|
||||||
concat_axis: int = 1) -> Dict[str, tf.Tensor]:
|
|
||||||
"""
|
"""
|
||||||
Return a function that applies synchronously the provided func on the
|
Return a function that applies synchronously the provided func on the
|
||||||
provided dictionnary of tensor. This means that func is applied to the
|
provided dictionnary of tensor. This means that func is applied to the
|
||||||
concatenation of the tensors in tensor_dict. This is useful for
|
concatenation of the tensors in tensor_dict. This is useful for
|
||||||
performing random operation that needs the same drawn value on multiple
|
performing random operation that needs the same drawn value on multiple
|
||||||
tensor, such as a random time-crop on both input data and label (the
|
tensor, such as a random time-crop on both input data and label (the
|
||||||
same crop should be applied to both input data and label, so random
|
same crop should be applied to both input data and label, so random
|
||||||
crop cannot be applied separately on each of them).
|
crop cannot be applied separately on each of them).
|
||||||
|
|
||||||
Notes:
|
Notes:
|
||||||
All tensor are assumed to be the same shape.
|
All tensor are assumed to be the same shape.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
tensor_dict (Dict[str, tensorflow.Tensor]):
|
tensor_dict (Dict[str, tensorflow.Tensor]):
|
||||||
A dictionary of tensor.
|
A dictionary of tensor.
|
||||||
func (Callable):
|
func (Callable):
|
||||||
Function to be applied to the concatenation of the tensors in
|
Function to be applied to the concatenation of the tensors in
|
||||||
`tensor_dict`.
|
`tensor_dict`.
|
||||||
concat_axis (int):
|
concat_axis (int):
|
||||||
The axis on which to perform the concatenation.
|
The axis on which to perform the concatenation.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Dict[str, tensorflow.Tensor]:
|
Dict[str, tensorflow.Tensor]:
|
||||||
Processed tensors dictionary with the same name (keys) as input
|
Processed tensors dictionary with the same name (keys) as input
|
||||||
tensor_dict.
|
tensor_dict.
|
||||||
"""
|
"""
|
||||||
if concat_axis not in {0, 1}:
|
if concat_axis not in {0, 1}:
|
||||||
raise NotImplementedError(
|
raise NotImplementedError(
|
||||||
'Function only implemented for concat_axis equal to 0 or 1')
|
"Function only implemented for concat_axis equal to 0 or 1"
|
||||||
|
)
|
||||||
tensor_list = list(tensor_dict.values())
|
tensor_list = list(tensor_dict.values())
|
||||||
concat_tensor = tf.concat(tensor_list, concat_axis)
|
concat_tensor = tf.concat(tensor_list, concat_axis)
|
||||||
processed_concat_tensor = func(concat_tensor)
|
processed_concat_tensor = func(concat_tensor)
|
||||||
@@ -56,107 +58,104 @@ def sync_apply(
|
|||||||
D = tensor_shape[concat_axis]
|
D = tensor_shape[concat_axis]
|
||||||
if concat_axis == 0:
|
if concat_axis == 0:
|
||||||
return {
|
return {
|
||||||
name: processed_concat_tensor[index * D:(index + 1) * D, :, :]
|
name: processed_concat_tensor[index * D : (index + 1) * D, :, :]
|
||||||
for index, name in enumerate(tensor_dict)}
|
for index, name in enumerate(tensor_dict)
|
||||||
|
}
|
||||||
return {
|
return {
|
||||||
name: processed_concat_tensor[:, index * D:(index + 1) * D, :]
|
name: processed_concat_tensor[:, index * D : (index + 1) * D, :]
|
||||||
for index, name in enumerate(tensor_dict)}
|
for index, name in enumerate(tensor_dict)
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
def from_float32_to_uint8(
|
def from_float32_to_uint8(
|
||||||
tensor: tf.Tensor,
|
tensor: tf.Tensor,
|
||||||
tensor_key: str = 'tensor',
|
tensor_key: str = "tensor",
|
||||||
min_key: str = 'min',
|
min_key: str = "min",
|
||||||
max_key: str = 'max') -> tf.Tensor:
|
max_key: str = "max",
|
||||||
|
) -> tf.Tensor:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
tensor (tensorflow.Tensor):
|
tensor (tensorflow.Tensor):
|
||||||
tensor_key (str):
|
tensor_key (str):
|
||||||
min_key (str):
|
min_key (str):
|
||||||
max_key (str):
|
max_key (str):
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
"""
|
"""
|
||||||
tensor_min = tf.reduce_min(tensor)
|
tensor_min = tf.reduce_min(tensor)
|
||||||
tensor_max = tf.reduce_max(tensor)
|
tensor_max = tf.reduce_max(tensor)
|
||||||
return {
|
return {
|
||||||
tensor_key: tf.cast(
|
tensor_key: tf.cast(
|
||||||
(tensor - tensor_min) / (tensor_max - tensor_min + 1e-16)
|
(tensor - tensor_min) / (tensor_max - tensor_min + 1e-16) * 255.9999,
|
||||||
* 255.9999, dtype=tf.uint8),
|
dtype=tf.uint8,
|
||||||
|
),
|
||||||
min_key: tensor_min,
|
min_key: tensor_min,
|
||||||
max_key: tensor_max}
|
max_key: tensor_max,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
def from_uint8_to_float32(
|
def from_uint8_to_float32(
|
||||||
tensor: tf.Tensor,
|
tensor: tf.Tensor, tensor_min: tf.Tensor, tensor_max: tf.Tensor
|
||||||
tensor_min: tf.Tensor,
|
) -> tf.Tensor:
|
||||||
tensor_max: tf.Tensor) -> tf.Tensor:
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
tensor (tensorflow.Tensor):
|
tensor (tensorflow.Tensor):
|
||||||
tensor_min (tensorflow.Tensor):
|
tensor_min (tensorflow.Tensor):
|
||||||
tensor_max (tensorflow.Tensor):
|
tensor_max (tensorflow.Tensor):
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
"""
|
"""
|
||||||
return (
|
return (
|
||||||
tf.cast(tensor, tf.float32)
|
tf.cast(tensor, tf.float32) * (tensor_max - tensor_min) / 255.9999 + tensor_min
|
||||||
* (tensor_max - tensor_min)
|
)
|
||||||
/ 255.9999 + tensor_min)
|
|
||||||
|
|
||||||
|
|
||||||
def pad_and_partition(
|
def pad_and_partition(tensor: tf.Tensor, segment_len: int) -> tf.Tensor:
|
||||||
tensor: tf.Tensor,
|
|
||||||
segment_len: int) -> tf.Tensor:
|
|
||||||
"""
|
"""
|
||||||
Pad and partition a tensor into segment of len `segment_len`
|
Pad and partition a tensor into segment of len `segment_len`
|
||||||
along the first dimension. The tensor is padded with 0 in order
|
along the first dimension. The tensor is padded with 0 in order
|
||||||
to ensure that the first dimension is a multiple of `segment_len`.
|
to ensure that the first dimension is a multiple of `segment_len`.
|
||||||
|
|
||||||
Tensor must be of known fixed rank
|
Tensor must be of known fixed rank
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
>>> tensor = [[1, 2, 3], [4, 5, 6]]
|
>>> tensor = [[1, 2, 3], [4, 5, 6]]
|
||||||
>>> segment_len = 2
|
>>> segment_len = 2
|
||||||
>>> pad_and_partition(tensor, segment_len)
|
>>> pad_and_partition(tensor, segment_len)
|
||||||
[[[1, 2], [4, 5]], [[3, 0], [6, 0]]]
|
[[[1, 2], [4, 5]], [[3, 0], [6, 0]]]
|
||||||
````
|
````
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
tensor (tensorflow.Tensor):
|
tensor (tensorflow.Tensor):
|
||||||
segment_len (int):
|
segment_len (int):
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
"""
|
"""
|
||||||
tensor_size = tf.math.floormod(tf.shape(tensor)[0], segment_len)
|
tensor_size = tf.math.floormod(tf.shape(tensor)[0], segment_len)
|
||||||
pad_size = tf.math.floormod(segment_len - tensor_size, segment_len)
|
pad_size = tf.math.floormod(segment_len - tensor_size, segment_len)
|
||||||
padded = tf.pad(
|
padded = tf.pad(tensor, [[0, pad_size]] + [[0, 0]] * (len(tensor.shape) - 1))
|
||||||
tensor,
|
|
||||||
[[0, pad_size]] + [[0, 0]] * (len(tensor.shape)-1))
|
|
||||||
split = (tf.shape(padded)[0] + segment_len - 1) // segment_len
|
split = (tf.shape(padded)[0] + segment_len - 1) // segment_len
|
||||||
return tf.reshape(
|
return tf.reshape(
|
||||||
padded,
|
padded, tf.concat([[split, segment_len], tf.shape(padded)[1:]], axis=0)
|
||||||
tf.concat(
|
)
|
||||||
[[split, segment_len], tf.shape(padded)[1:]],
|
|
||||||
axis=0))
|
|
||||||
|
|
||||||
|
|
||||||
def pad_and_reshape(instr_spec, frame_length, F) -> Any:
|
def pad_and_reshape(instr_spec, frame_length, F) -> Any:
|
||||||
"""
|
"""
|
||||||
Parameters:
|
Parameters:
|
||||||
instr_spec:
|
instr_spec:
|
||||||
frame_length:
|
frame_length:
|
||||||
F:
|
F:
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Any:
|
Any:
|
||||||
"""
|
"""
|
||||||
spec_shape = tf.shape(instr_spec)
|
spec_shape = tf.shape(instr_spec)
|
||||||
extension_row = tf.zeros((spec_shape[0], spec_shape[1], 1, spec_shape[-1]))
|
extension_row = tf.zeros((spec_shape[0], spec_shape[1], 1, spec_shape[-1]))
|
||||||
@@ -164,77 +163,67 @@ def pad_and_reshape(instr_spec, frame_length, F) -> Any:
|
|||||||
extension = tf.tile(extension_row, [1, 1, n_extra_row, 1])
|
extension = tf.tile(extension_row, [1, 1, n_extra_row, 1])
|
||||||
extended_spec = tf.concat([instr_spec, extension], axis=2)
|
extended_spec = tf.concat([instr_spec, extension], axis=2)
|
||||||
old_shape = tf.shape(extended_spec)
|
old_shape = tf.shape(extended_spec)
|
||||||
new_shape = tf.concat([
|
new_shape = tf.concat([[old_shape[0] * old_shape[1]], old_shape[2:]], axis=0)
|
||||||
[old_shape[0] * old_shape[1]],
|
|
||||||
old_shape[2:]],
|
|
||||||
axis=0)
|
|
||||||
processed_instr_spec = tf.reshape(extended_spec, new_shape)
|
processed_instr_spec = tf.reshape(extended_spec, new_shape)
|
||||||
return processed_instr_spec
|
return processed_instr_spec
|
||||||
|
|
||||||
|
|
||||||
def dataset_from_csv(csv_path: str, **kwargs) -> Any:
|
def dataset_from_csv(csv_path: str, **kwargs) -> Any:
|
||||||
"""
|
"""
|
||||||
Load dataset from a CSV file using Pandas. kwargs if any are
|
Load dataset from a CSV file using Pandas. kwargs if any are
|
||||||
forwarded to the `pandas.read_csv` function.
|
forwarded to the `pandas.read_csv` function.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
csv_path (str):
|
csv_path (str):
|
||||||
Path of the CSV file to load dataset from.
|
Path of the CSV file to load dataset from.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Any:
|
Any:
|
||||||
Loaded dataset.
|
Loaded dataset.
|
||||||
"""
|
"""
|
||||||
df = pd.read_csv(csv_path, **kwargs)
|
df = pd.read_csv(csv_path, **kwargs)
|
||||||
dataset = (
|
dataset = tf.data.Dataset.from_tensor_slices({key: df[key].values for key in df})
|
||||||
tf.data.Dataset.from_tensor_slices(
|
|
||||||
{key: df[key].values for key in df})
|
|
||||||
)
|
|
||||||
return dataset
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
def check_tensor_shape(
|
def check_tensor_shape(tensor_tf: tf.Tensor, target_shape: Any) -> bool:
|
||||||
tensor_tf: tf.Tensor,
|
|
||||||
target_shape: Any) -> bool:
|
|
||||||
"""
|
"""
|
||||||
Return a Tensorflow boolean graph that indicates whether
|
Return a Tensorflow boolean graph that indicates whether
|
||||||
sample[features_key] has the specified target shape. Only check
|
sample[features_key] has the specified target shape. Only check
|
||||||
not None entries of target_shape.
|
not None entries of target_shape.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
tensor_tf (tensorflow.Tensor):
|
tensor_tf (tensorflow.Tensor):
|
||||||
Tensor to check shape for.
|
Tensor to check shape for.
|
||||||
target_shape (Any):
|
target_shape (Any):
|
||||||
Target shape to compare tensor to.
|
Target shape to compare tensor to.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
bool:
|
bool:
|
||||||
`True` if shape is valid, `False` otherwise (as TF boolean).
|
`True` if shape is valid, `False` otherwise (as TF boolean).
|
||||||
"""
|
"""
|
||||||
result = tf.constant(True)
|
result = tf.constant(True)
|
||||||
for i, target_length in enumerate(target_shape):
|
for i, target_length in enumerate(target_shape):
|
||||||
if target_length:
|
if target_length:
|
||||||
result = tf.logical_and(
|
result = tf.logical_and(
|
||||||
result,
|
result, tf.equal(tf.constant(target_length), tf.shape(tensor_tf)[i])
|
||||||
tf.equal(tf.constant(target_length), tf.shape(tensor_tf)[i]))
|
)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
def set_tensor_shape(
|
def set_tensor_shape(tensor: tf.Tensor, tensor_shape: Any) -> tf.Tensor:
|
||||||
tensor: tf.Tensor,
|
|
||||||
tensor_shape: Any) -> tf.Tensor:
|
|
||||||
"""
|
"""
|
||||||
Set shape for a tensor (not in place, as opposed to tf.set_shape)
|
Set shape for a tensor (not in place, as opposed to tf.set_shape)
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
tensor (tensorflow.Tensor):
|
tensor (tensorflow.Tensor):
|
||||||
Tensor to reshape.
|
Tensor to reshape.
|
||||||
tensor_shape (Any):
|
tensor_shape (Any):
|
||||||
Shape to apply to the tensor.
|
Shape to apply to the tensor.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tensorflow.Tensor:
|
tensorflow.Tensor:
|
||||||
A reshaped tensor.
|
A reshaped tensor.
|
||||||
"""
|
"""
|
||||||
# NOTE: That SOUND LIKE IN PLACE HERE ?
|
# NOTE: That SOUND LIKE IN PLACE HERE ?
|
||||||
tensor.set_shape(tensor_shape)
|
tensor.set_shape(tensor_shape)
|
||||||
|
|||||||
Reference in New Issue
Block a user