Files
spleeter/tests/test_eval.py

88 lines
2.7 KiB
Python
Raw Normal View History

2020-06-05 12:27:06 +02:00
#!/usr/bin/env python
# coding: utf8
""" Unit testing for Separator class. """
2020-07-17 13:30:42 +02:00
__email__ = 'spleeter@deezer.com'
2020-06-05 12:27:06 +02:00
__author__ = 'Deezer Research'
__license__ = 'MIT License'
import filecmp
import itertools
from os import makedirs
from os.path import splitext, basename, exists, join
from tempfile import TemporaryDirectory
import pytest
import numpy as np
import tensorflow as tf
from spleeter.audio.adapter import get_default_audio_adapter
from spleeter.commands import create_argument_parser
from spleeter.commands import evaluate
from spleeter.utils.configuration import load_configuration
2020-07-24 15:02:34 +02:00
BACKENDS = ["tensorflow", "librosa"]
TEST_CONFIGURATIONS = {el:el for el in BACKENDS}
res_4stems = {
"vocals": {
"SDR": 3.25e-05,
"SAR": -11.153575,
"SIR": -1.3849,
"ISR": 2.75e-05
2020-06-05 12:27:06 +02:00
},
"drums": {
"SDR": -0.079505,
"SAR": -15.7073575,
"SIR": -4.972755,
"ISR": 0.0013575
2020-06-05 12:27:06 +02:00
},
"bass":{
"SDR": 2.5e-06,
"SAR": -10.3520575,
"SIR": -4.272325,
"ISR": 2.5e-06
2020-06-05 12:27:06 +02:00
},
"other":{
"SDR": -1.359175,
"SAR": -14.7076775,
"SIR": -4.761505,
"ISR": -0.01528
2020-06-05 12:27:06 +02:00
}
}
def generate_fake_eval_dataset(path):
"""
generate fake evaluation dataset
"""
2020-06-05 12:27:06 +02:00
aa = get_default_audio_adapter()
n_songs = 2
fs = 44100
duration = 3
n_channels = 2
2020-06-05 13:42:52 +02:00
rng = np.random.RandomState(seed=0)
2020-06-05 12:27:06 +02:00
for song in range(n_songs):
song_path = join(path, "test", f"song{song}")
makedirs(song_path, exist_ok=True)
for instr in ["mixture", "vocals", "bass", "drums", "other"]:
filename = join(song_path, f"{instr}.wav")
data = rng.rand(duration*fs, n_channels)-0.5
aa.save(filename, data, fs)
2020-07-24 15:39:43 +02:00
@pytest.mark.parametrize('backend', TEST_CONFIGURATIONS)
def test_evaluate(backend):
with TemporaryDirectory() as directory:
generate_fake_eval_dataset(directory)
p = create_argument_parser()
2020-07-24 15:39:43 +02:00
arguments = p.parse_args(["evaluate", "-p", "spleeter:4stems", "--mus_dir", directory, "-B", backend])
params = load_configuration(arguments.configuration)
metrics = evaluate.entrypoint(arguments, params)
for instrument, metric in metrics.items():
2020-07-24 15:39:43 +02:00
for m, value in metric.items():
2020-09-25 13:32:57 +02:00
assert np.allclose(np.median(value), res_4stems[instrument][m], atol=1e-3)