2020-06-05 12:27:06 +02:00
|
|
|
#!/usr/bin/env python
|
|
|
|
|
# coding: utf8
|
|
|
|
|
|
|
|
|
|
""" Unit testing for Separator class. """
|
|
|
|
|
|
2020-07-17 13:30:42 +02:00
|
|
|
__email__ = 'spleeter@deezer.com'
|
2020-06-05 12:27:06 +02:00
|
|
|
__author__ = 'Deezer Research'
|
|
|
|
|
__license__ = 'MIT License'
|
|
|
|
|
|
|
|
|
|
import filecmp
|
|
|
|
|
import itertools
|
|
|
|
|
from os import makedirs
|
|
|
|
|
from os.path import splitext, basename, exists, join
|
|
|
|
|
from tempfile import TemporaryDirectory
|
|
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
from spleeter.audio.adapter import get_default_audio_adapter
|
|
|
|
|
from spleeter.commands import create_argument_parser
|
|
|
|
|
|
|
|
|
|
from spleeter.commands import evaluate
|
|
|
|
|
|
|
|
|
|
from spleeter.utils.configuration import load_configuration
|
|
|
|
|
|
2020-07-24 15:02:34 +02:00
|
|
|
BACKENDS = ["tensorflow", "librosa"]
|
|
|
|
|
TEST_CONFIGURATIONS = {el:el for el in BACKENDS}
|
|
|
|
|
|
|
|
|
|
res_4stems = {
|
2020-07-24 16:32:32 +02:00
|
|
|
"vocals": {
|
|
|
|
|
"SDR": 3.25e-05,
|
|
|
|
|
"SAR": -11.153575,
|
|
|
|
|
"SIR": -1.3849,
|
|
|
|
|
"ISR": 2.75e-05
|
2020-06-05 12:27:06 +02:00
|
|
|
},
|
|
|
|
|
"drums": {
|
2020-07-24 16:32:32 +02:00
|
|
|
"SDR": -0.079505,
|
|
|
|
|
"SAR": -15.7073575,
|
|
|
|
|
"SIR": -4.972755,
|
|
|
|
|
"ISR": 0.0013575
|
2020-06-05 12:27:06 +02:00
|
|
|
},
|
|
|
|
|
"bass":{
|
2020-07-24 16:32:32 +02:00
|
|
|
"SDR": 2.5e-06,
|
|
|
|
|
"SAR": -10.3520575,
|
|
|
|
|
"SIR": -4.272325,
|
|
|
|
|
"ISR": 2.5e-06
|
2020-06-05 12:27:06 +02:00
|
|
|
},
|
|
|
|
|
"other":{
|
2020-07-24 16:32:32 +02:00
|
|
|
"SDR": -1.359175,
|
|
|
|
|
"SAR": -14.7076775,
|
|
|
|
|
"SIR": -4.761505,
|
|
|
|
|
"ISR": -0.01528
|
2020-06-05 12:27:06 +02:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def generate_fake_eval_dataset(path):
|
2020-09-25 13:16:27 +02:00
|
|
|
"""
|
|
|
|
|
generate fake evaluation dataset
|
|
|
|
|
"""
|
2020-06-05 12:27:06 +02:00
|
|
|
aa = get_default_audio_adapter()
|
|
|
|
|
n_songs = 2
|
|
|
|
|
fs = 44100
|
|
|
|
|
duration = 3
|
|
|
|
|
n_channels = 2
|
2020-06-05 13:42:52 +02:00
|
|
|
rng = np.random.RandomState(seed=0)
|
2020-06-05 12:27:06 +02:00
|
|
|
for song in range(n_songs):
|
|
|
|
|
song_path = join(path, "test", f"song{song}")
|
|
|
|
|
makedirs(song_path, exist_ok=True)
|
|
|
|
|
for instr in ["mixture", "vocals", "bass", "drums", "other"]:
|
|
|
|
|
filename = join(song_path, f"{instr}.wav")
|
|
|
|
|
data = rng.rand(duration*fs, n_channels)-0.5
|
|
|
|
|
aa.save(filename, data, fs)
|
|
|
|
|
|
|
|
|
|
|
2020-09-25 13:16:27 +02:00
|
|
|
|
2020-07-24 15:39:43 +02:00
|
|
|
@pytest.mark.parametrize('backend', TEST_CONFIGURATIONS)
|
|
|
|
|
def test_evaluate(backend):
|
|
|
|
|
with TemporaryDirectory() as directory:
|
|
|
|
|
generate_fake_eval_dataset(directory)
|
2020-09-25 13:16:27 +02:00
|
|
|
p = create_argument_parser()
|
2020-07-24 15:39:43 +02:00
|
|
|
arguments = p.parse_args(["evaluate", "-p", "spleeter:4stems", "--mus_dir", directory, "-B", backend])
|
2020-09-25 13:16:27 +02:00
|
|
|
params = load_configuration(arguments.configuration)
|
|
|
|
|
metrics = evaluate.entrypoint(arguments, params)
|
|
|
|
|
for instrument, metric in metrics.items():
|
2020-07-24 15:39:43 +02:00
|
|
|
for m, value in metric.items():
|
2020-09-25 13:32:57 +02:00
|
|
|
assert np.allclose(np.median(value), res_4stems[instrument][m], atol=1e-3)
|